



# Mosbaek CEV flow regulator

# Verification Report



Mosbaek A/S

Verification Report February 2015



| Approved by                           |    |
|---------------------------------------|----|
| Sten Lindberg (Head of department, DH | H) |

Sindling

Approved by Peter Fritzel (Verification responsible, ETA Danmark)

Peter Fritsel

# Mosbaek CEV flow regulator

Verification Report

Prepared forMosbaek A/SRepresented byTorben Krejberg, Technical Director



Test facility

| Project No     | 11530013 |
|----------------|----------|
| Classification | Public   |
| Version        | Final    |

| Authors | Mette Tjener Andersson, DHI |
|---------|-----------------------------|
|         |                             |
|         |                             |
|         |                             |

# Contents

| 1              | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3             |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 11             | Name of technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3             |
| 1.1            | Name of technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <br>כ         |
| 1.2            | Name a formi for the proposed and the second second for the second formation and the second s | ວ<br>ວ        |
| 1.3            | Name of vertification body and responsible of vertification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
| 1.4            | Verification organisation including experts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4             |
| 1.5            | Verification process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4             |
| 1.6            | Deviations from the verification protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5             |
| 2              | Description of technology and application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7             |
| 21             | Summary description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7             |
| 2.1            | Juliniary description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ······ /<br>0 |
| 2.2            | Matvix (matviaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0             |
| 2.2.1          | Matrix/matrices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ð             |
| 2.2.2          | Purpose(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8             |
| 2.3            | Verification parameters definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9             |
| 2.3.1          | Flow at H <sub>bump</sub> and H <sub>design</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9             |
| 2.3.2          | Flow reduction at H <sub>design</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9             |
| 3              | Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| 31             | Calculation of verification parameters performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10            |
| 3.2            | Evaluation of test quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10            |
| 3.2            | Control data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10            |
| 222            | Audite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10            |
| 2.2.2          | Deviationa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10            |
| 3.2.3          | Deviations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11            |
| 3.3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11            |
| 3.3.1          | Performance parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| 3.3.2          | Flow at H <sub>bump</sub> and H <sub>design</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| 3.3.3          | Flow reduction at H <sub>design</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| 3.3.4          | Operational parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| 3.3.5          | Additional parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| 3.3.5.1        | User manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13            |
| 3.3.5.2        | Required resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14            |
| 3.3.5.3        | Occupational health and environmental impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16            |
| 3.4            | Recommendation for the Statement of Verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16            |
| 3.4.1          | Technology description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16            |
| 3.4.2          | Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17            |
| 3.4.2.1        | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17            |
| 3.4.2.2        | Purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17            |
| 3.4.2.3        | Conditions of operation and use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17            |
| 3.4.2.4        | Verification parameters definition summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17            |
| 3.4.3          | Test and analysis design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
| 3.4.3.1        | Laboratory or field conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| 3.4.3.2        | Matrix composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| 3.4.3.3        | Test and analysis parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| 3.4.3.4        | Test and analysis methods summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| 3435           | Parameters measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19            |
| 344            | Verification results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20            |
| 3441           | Performance narameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20            |
| 3447           | Onerational narameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20            |
| 3.7.7.2        | Environmental parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>20      |
| 3.7.7.3        | Additional parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20<br>20      |
| 3.4.4<br>2 1 E | Additional information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20<br>21      |
| 3.4.3<br>246   | Auditional IIII01 IIIdu011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| 3.4.0          | Quality assurance and deviations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |

| 4 | Quality assurance | 22 |
|---|-------------------|----|
| 5 | References        | 25 |

## **Figures**

| Figure 1-1 | Organisation of the verification and test                                                                  |
|------------|------------------------------------------------------------------------------------------------------------|
| Figure 2-1 | Sketch of CEV flow regulator installed in well. Sketch provided by Mosbaek7                                |
| Figure 2-2 | Graphic showing the general vortex brake effect on water outflow, with CEVs operating at 78% and 100%      |
|            | efficiency and water inflow to well larger than outflow though CEV (well is filling up). Graph provided by |
|            | Mosbaek                                                                                                    |
| Figure 3-1 | Correlation between Qinflow and Qbump given for all tested CEVs12                                          |
| Figure 3-2 | A) Sketch of CEV flow regulator installed in well. B) Graphic showing the general vortex brake effect on   |
|            | water outflow, with CEVs operating at 78% and 100% efficiency and water inflow to well larger than         |
|            | outflow though CEV (well is filling up). Both provided by Mosbaek16                                        |
| Figure 3-3 | Sketch of test set-up                                                                                      |

## **Tables**

| Table 1-1 | Simplified overview of the verification process.                                                                                                   | . 5 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2-1 | Specific performance claims from the proposer on Q <sub>bump</sub> and Q <sub>design</sub>                                                         | 9   |
| Table 2-2 | Specific performance claims by the proposer on flow reduction compared to no CEV installed in well                                                 | 9   |
| Table 3-1 | Verified performance on Q <sub>bump</sub> . *) Be aware that the results of Q <sub>bump</sub> are uniquely influenced by Q <sub>inflow</sub> , see |     |
|           | later                                                                                                                                              | 11  |
| Table 3-2 | Verified performance on Q <sub>design</sub> . *) based on two tests only                                                                           | 12  |
| Table 3-2 | Verified performance on flow reduction compared to no CEV installed in well.                                                                       | 12  |
| Table 3-3 | Evaluation of user manual                                                                                                                          | 13  |
| Table 3-4 | List of capital cost items and operation and maintenance cost items per product unit                                                               | 15  |
| Table 4-1 | QA plan for the verification                                                                                                                       | 22  |

## **Appendices**

| А | Terms and definitions          |
|---|--------------------------------|
| В | Specific Verification Protocol |
| С | Test plan                      |
|   | _                              |

- B C
- D Test report
- E Audit reports

Archiving: All standard project files (documents, etc) are archived at ETA Danmark. Any other project files (set-up files, forcing data, model output, etc.) are archived with the institute performing the tests or analysis.

## 1 Introduction

Environmental technology verification (ETV) is an independent (third party) assessment of the performance of a technology or a product for a specified application under defined conditions and quality assurance.

The objective of this verification is to evaluate the performance of a vertical centrifugal flow regulator for storm water.

This Verification Report and the verification of the technology are based on the Specific Verification Protocol, Test Plan and Test Report for the Mosbaek CEV flow regulator, included as Appendix B, D and E.

## 1.1 Name of technology

Vertical centrifugal flow regulator, CEV (CEntrifugal Vertical), produced by Mosbaek A/S.

Mosbaek produces CEVs for flow capacities from 0.2 l/s to 80 l/s. The verification will cover verification test of four specific CEV dimensions within this range.

Mosbaek have selected four specific CEV-models to represent their CEV technology, namely:

- CEV 1.4l/s @ 1.00m 100%
- CEV 4.9l/s @ 1.50m 100%
- CEV 10.5/s @ 2.00m 78%
- CEV 10.5l/s @ 2.00m 100%

The name of the CEV indicates the designed maximum flow of for example 1.4 l/s and the correlating maximum pressure height of for example 1.00 m. The percentage (100% and 78%) indicates the percentage of the design flow at the point/bump where the vortex is formed.

## 1.2 Name and contact of proposer

Mosbaek A/S Værkstedsvej 20 4600 Køge Denmark

Contact: Torben Krejberg, e-mail: tk@mosbaek.dk, phone: +45 5663 8580

Mosbaek website: www.mosbaek.dk

## 1.3 Name of verification body and responsible of verification

ETA Danmark A/S Göteborg Plads 1 2150 Nordhavn Denmark

Verification responsible: Peter Fritzel (PF), email: pf@etadanmark.dk, phone +45 7224 5900 Appointed verification expert: Mette Tjener Andersson (MTA), e-mail: mta@dhigroup.com, phone: +45 4516 9148

## 1.4 Verification organisation including experts

The verification was conducted by ETA Danmark A/S in cooperation with Danish Centre for Verification of Climate and Environmental Technologies, DANETV, which performs independent verification of technologies and products for the reduction of climate changes and pollution.

The verification is conducted to satisfy the requirements of the ETV scheme established by the European Union (EU ETV Pilot Programme) [1].

The verification was coordinated and supervised by ETA Danmark, assisted by an appointed verification expert, while tests were coordinated and supervised by DHI with the participation of the proposer, Mosbaek. The testing was conducted at the premises of Mosbaek in Køge, where a test facility has been constructed.

An internal and an external expert are assigned to provide independent expert review of the planning, conducting and reporting of the verification and tests:

- Internal technical expert: Morten Just Kjølby (MJK), DHI, Urban and Industry Dept., e-mail mjk@dhigroup.com
- External technical expert: Verification protocol: Professor Torben Larsen (TL), Aalborg University, Department of Civil Engineering, e-mail tl@civil.aau.dk. Verification Report: Ian Walker (IW), WRc plc, e-mail Ian.Walker@wrcplc.co.uk

The tasks assigned to each expert are given in more detail in section 4 Quality assurance.

The relationships between the organisations related to this verification and test are given in Figure 1-1.



Figure 1-1 Organisation of the verification and test.

### 1.5 Verification process

The principles of operation of the DANETV verification process are given in Table 1-1. As it can be seen, verification and testing are divided between the verification and the test body.

#### Table 1-1 Simplified overview of the verification process.

| Phase             | Responsible       | Document                       |
|-------------------|-------------------|--------------------------------|
| Preliminary phase | Verification body | Quick Scan                     |
|                   |                   | Contract                       |
|                   |                   | Specific verification protocol |
| Testing phase     | Test body         | Test plan                      |
|                   |                   | Test report                    |
| Assessment phase  | Verification body | Verification report            |
|                   |                   | Statement of Verification      |

Quality assurance is carried out by an expert group of internal and external technical experts. Two audits of the test system were performed, starting with an internal audit by the test body followed by an external audit by the DANETV verification body under ETA Danmark. Reference for the verification process is the EU ETV General Verification Protocol [1] and ETA Danmarks internal procedure [2]. A Statement of Verification will be issued by ETA Danmark after completion of the verification. This verification report will include the other documents prepared as appendices.

## 1.6 Deviations from the verification protocol

There were no deviations to the verification protocol.

# 2 Description of technology and application

## 2.1 Summary description

The flow regulator technology for extreme rainfall events is based on quickly reaching the maximum discharge flow and staying at or below this value. The maximum discharge flow is the allowable amount of water passing through the regulator without causing any problems to the downstream pipe network.

The technology verified is the vertical centrifugal flow regulator, CEV (**CE**ntrifugal **V**ertical) from Mosbaek. It is a wet mounted vortex flow regulator for storm water with design flows between 0.2 and 80 l/s.

The CEV regulates the water due to the vortex created when sufficient water flow is going through the unit. The vortex is created when the water flow reaches a certain flow rate. The vortex slows down the water flow through the CEV. In this way the water is stored in the well and the water flow is then kept almost constant. A schematic view of the CEV in operation is shown in Figure 2-1.

The CEV can be designed to fulfil different design criteria. The specific design criteria are defined by the client and Mosbaek in cooperation according to the design of the existing or planned piping network.



Figure 2-1 Sketch of CEV flow regulator installed in well. Sketch provided by Mosbaek.

The CEVs verified have inflow in the bottom of the regulator, as shown in Figure 2-1. This is to ensure proper and equal hydraulic conditions. Furthermore, in a standard installation Mosbaek will ensure that inlet and outlet are located at the same level in the well (as depicted on Figure 2-1) in order to be able to control the water level rise in the well optimally.

Figure 2-2 shows the flow through a CEV. In the 100% case the maximum outlet ( $Q_{design}$ ) is met twice - first where the vortex is formed (the bump on the graph) and then at the specified  $H_{design}$ , where  $H_{design}$  is calculated from the invert of the discharge pipe to the maximum water level in the well. A 78% case (a smaller CEV in a well with same height) with the same  $H_{design}$  is also shown; here the bump occurs at a flow of 78% of  $Q_{design}$ .





The optimal solution (100%), where  $Q_{bump}$  equals  $Q_{design}$ , gives less restriction at low heads allowing a better flow during normal operating situations and thereby less risk of blocking downstream.

## 2.2 Intended application

The intended application of the technology for verification is defined in terms of the matrix and the purpose.

### 2.2.1 Matrix/matrices

The CEV is for storm water and certain types of industrial wastewaters. The CEV is installed before the combined system (with storm water and wastewater), and is thereby restricting the amount of storm water into the combined system. The verification therefore only covers the matrix storm water.

#### 2.2.2 Purpose(s)

The purpose of the technology is to store storm water at appropriate places before entering the piping system during storm water events. The CEV is installed in wells and basins depending on the piping network.

## 2.3 Verification parameters definition

There is no regulation to fulfil for this technology. The initial claims from the proposer are matching the claims from other vendors. No need has been found to add any additional performance parameters to those initially selected by the proposer.

Mosbaek has two types of claims for their CEVs, both described below.

### 2.3.1 Flow at H<sub>bump</sub> and H<sub>design</sub>

Mosbaek has specified the performance of four selected models of the CEV through performance graphs and specified the following specific claims (for details, please consult Appendix B):

| 100% model: | $Q_{design}\pm5\%$ is met at $H_{bump}$ and $H_{design}$                                       |
|-------------|------------------------------------------------------------------------------------------------|
| X% model:   | X% of $Q_{design} \pm 5\%$ is met at $H_{bump}$<br>$Q_{design} \pm 5\%$ is met at $H_{design}$ |

Specific values for each of the four selected CEVs are listed in Table 2-1.

| Table 2-1 Specific performance claims northine proposer on abump and adesig | Table 2-1 | Specific performance claims from the proposer on Q <sub>bump</sub> and Q <sub>design</sub> |
|-----------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------|

| CEV model                  | Qbump (I/s)   | Q <sub>design</sub> (I/s) |
|----------------------------|---------------|---------------------------|
| CEV 1.4l/s @ 1.00m - 100%  | $1.4 \pm 5\%$ | 1.4 ±5%                   |
| CEV 4.9l/s @ 1.50 m - 100% | 4.9 ±5%       | 4.9 ±5%                   |
| CEV 10.5l/s @ 2.00m - 78%  | 8.2 ±5%       | 10.5 ±5%                  |
| CEV 10.5l/s @ 2.00m - 100% | 10.5 ±5%      | 10.5 ±5%                  |

## 2.3.2 Flow reduction at H<sub>design</sub>

Mosbaek has further specified their claimed reduction of the flow at H<sub>design</sub> compared to a well with no flow regulator (equal to a hole in a straight wall, with no additional piping).

Mosbaek claims the following:

#### A Mosbaek CEV 100% model can reduce the flow by a factor of 4.25 at $Q_{design}$

Performing tests where the test well is filled up to  $H_{design}$  with no CEV will require very high water flow. Therefor this claim will be verified using only the smallest of the four CEVs used in the tests. Specific performance claim is listed in Table 2-2.

Table 2-2 Specific performance claims by the proposer on flow reduction compared to no CEV installed in well.

| CEV model                 | Orifice diameter (Ø)<br>(mm)  | Flow reduction factor at $H_{design}$ |
|---------------------------|-------------------------------|---------------------------------------|
| CEV 1.4l/s @ 1.00m - 100% | Diameter corresponding to CEV | 4.25                                  |
|                           | 1.4l/s @ 1.00m – 100% outlet  |                                       |

## **3** Evaluation

Detailed descriptions of the test design and test results are found in the Test Plan (Appendix C) and Test Report (Appendix D).

## 3.1 Calculation of verification parameters performance

Detailed information on how to calculate the verification parameters are included in the Specific Verification Protocol in Appendix B.

## 3.2 Evaluation of test quality

#### 3.2.1 Control data

Test system control included leakage test and for CEV1.4l/s @ H=1.00m - 100% investigation of the variation was included for tests carried out with identical inlet flows. The variation was minimal and far less than 10 %, which means - according to the Verification Protocol (Appendix B), section 5.1.4 - that triplicate tests were not needed for the remaining CEVs.

Test performance audit included review of calibration certificates for pressure transducers and flowmeters. They are valid and can be found in Appendix to the Test Plan (Appendix C). In addition calibration tests were performed of pressure transducers on both inlet and outlet side.

The outflow could not be measured directly due to air and circulation in the outlet. Instead measurement of head in the outlet tank and of the overflow from the outlet tank where measured. The calculation two different methods were listed , see Appendix B section 6.1 Calculation of performance parameters. Method 2 was expected to most precise, while method should be used for control. For method 1the time series had to be subjected to intensive averaging to get readable results. A comparison between the results obtained by means of method 1 and method 2 for one of the model tests has been performed. The results are shown in the Appendix D of the Test Report (Appendix D to this report). It appears that there is, apart from the fluctuations, a good agreement between the two methods. However, since the quality of the results with method 2 was very reliable and, while the results obtained by means of method 1 are subject to large fluctuations, it was chosen to use method 2 only.

### 3.2.2 Audits

During testing and internal test, a system audit was performed by Jesper Fuchs from DHI on 29 September 2014. The verification body ETA Denmark, represented by Peter Fritzel, performed a test system audit on 2 October 2014.

Conclusions of the internal audit (Jesper Fuchs):

"The test is performed in accordance with the test plan and carried out in a safe manner. Handling and storage of data is safe".

Conclusions of the audit by ETA Denmark (Peter Fritzel):

"There is consistency with the test plan and handling of measurements is carried out in a safe manner".

The full audit reports can be found in Appendix E.

#### 3.2.3 Deviations

There were four deviations to the test plan. The description of these can be found in full in Appendix C of the Test Report included as Appendix E to this report. A summary of the deviations is as follows:

- 1. Instead of establishing the zero level in the inlet tank for each test, a common zero scan was performed for each CEV type. This zero scan was carried out as an individual test instead of an integrated part of each test.
- 2. The lowest inflow in the tests with CEV 1.4l/s @ 1.0m was carried out with too low inflow, 1.79l/s instead of 1.9l/s. With good accuracy the inlet flow, which will result in a water level rise of 0.5mm/s, can be found by interpolation. Such interpolation shows that an inflow of approximately 2.8l/s will result in a water level rise of 0.5mm/s. The corresponding Qbump would be approximately 1.28l/s (see Figure 3.8 in Test Report (Appendix E)).
- 3. For all 100% CEVs the largest inflows gave larger water level rise than 1.5mm/s, which was the largest water level rise to be tested and a predefined operational parameter. During the test attempt was made to come close to 1.5 mm/s, but due to the character of the curve, with the rapid bump, it was difficult in advance to estimate the water level rise. With good accuracy the inlet flows, which will result in a water level rise of 1.5mm/s, can be found by interpolation. Doing this is it nice to have a measured values of water level rise is above 1.5 mm/s. Interpolations show for:
  - CEV 1.4l/s @ 1.0m that such a water level rise would be obtained for an inflow of approximately 6.1l/s. The corresponding Qbump would be approximately 1.44l/s (see Figure 3.8 in the Test Report (Appendix E))
  - CEV 4.9l/s @ 1.5m that such a water level rise would be obtained for an inflow of approximately 9.2l/s. The corresponding Qbump would be approximately 4.93l/s (see Figure 3.12 in Test Report (Appendix E))
  - CEV 10.5l/s @ 2.0m that such a water level rise would be obtained for an inflow of approximately 13.9l/s. The corresponding Qbump would be approximately 10.4l/s (see Figure 3.16 in Test Report (Appendix E))
- 4. The test with the orifice was carried out with a larger inflow than predefined. This was done, as the Q H relation for an orifice is independent of the water level increase, which also is documented by comparing with the theoretical relation, see Figure 3.23 in the Test Report (Appendix E).

## 3.3 Verification results

#### 3.3.1 Performance parameters

The verified performance for the two parameters is listed below. The results are transferred directly from the Test Report (Appendix E).

#### 3.3.2 Flow at H<sub>bump</sub> and H<sub>design</sub>

Specific performance for each of the four selected CEVs is listed in Table 3-1 and Table 3-2.

 Table 3-1
 Verified performance on Q<sub>bump</sub>. \*) Be aware that the results of Q<sub>bump</sub> are uniquely influenced by Q<sub>inflow</sub>, see later.\*) For this flow the water level rise was only 0.19 mm/s, while the operational requirement was >0.5 mm/s, this is an explanation for the deviation from the expected.

| CEV model | Inflow in test | Qbump | Deviation from model |
|-----------|----------------|-------|----------------------|
|           | (l/s)          | (l/s) | characteristics (%)  |

|                            |                | Mean⁺ | Range        |                   |
|----------------------------|----------------|-------|--------------|-------------------|
| CEV 1.4l/s @ 1.00m - 100%  | 1.79 to 6.31   | 1.34  | 1.22* - 1.45 | -4.3 (-13* - 3.6) |
| CEV 4.9l/s @ 1.50 m - 100% | 5.89 to 9.99   | 4.74  | 4.50 - 5.04  | -3.3 (-8.2 – 2.9) |
| CEV 10.5l/s @ 2.00m - 78%  | 8.60 to 12.97  | 8.17  | 7.57 - 8.74  | -0.2 (-7.6 – 6.7) |
| CEV 10.5l/s @ 2.00m - 100% | 11.32 to 15.24 | 10.18 | 9.75 - 10.67 | -3.0 (-7.1 – 1.6) |

Table 3-2Verified performance on Qdesign. \*) based on two tests only.

| CEV model                  | Inflow in test<br>(l/s) | Q <sub>design</sub><br>(I/s) |                | Deviation from model characteristics (%) |
|----------------------------|-------------------------|------------------------------|----------------|------------------------------------------|
|                            |                         | Mean                         | Range          |                                          |
| CEV 1.4l/s @ 1.00m - 100%  | 1.79 to 6.31            | 1.43                         | 1.42 - 1.45    | 2.1 (1.4 - 3.6)                          |
| CEV 4.9l/s @ 1.50 m – 100% | 5.89 to 9.99            | 4.78                         | 4-76 - 4.80    | -2.4 (-2.9 - (-2.0))                     |
| CEV 10.5l/s @ 2.00m - 78%  | 8.60 to 12.97           | 10.11                        | 10.09 - 10.12* | -3.7 (-3.9 – (-3.6))                     |
| CEV 10.5l/s @ 2.00m - 100% | 11.32 to 15.24          | 10.56                        | 10.55 - 10.56  | 0.6 (0.5 – 0.6)                          |
| Orifice                    | 13.72                   | 6.36                         | N/A            | N/A                                      |

Please be aware that there is a unique influence of  $Q_{bumb}$  by  $Q_{inflow}$ , see Figure 3-1.



Figure 3-1 Correlation between Q<sub>inflow</sub> and Q<sub>bump</sub> given for all tested CEVs.

## 3.3.3 Flow reduction at H<sub>design</sub>

Performance compared to a well with no flow regulator is listed in Table 3-3.

Table 3-3 Verified performance on flow reduction compared to no CEV installed in well.

| CEV model                 | Orifice diameter (Ø)<br>(mm)                                  | Flow reduction factor at $H_{design}$ |
|---------------------------|---------------------------------------------------------------|---------------------------------------|
| CEV 1.4l/s @ 1.00m - 100% | Diameter corresponding to CEV<br>1.41/s @ 1.00m – 100% outlet | 4.45                                  |

Mosbaek CEV 1.4l/s@1.00m - 100 % is verified to reduce the flow by a factor of 4.45 at Q<sub>design</sub>.

#### 3.3.4 Operational parameters

During operation the following parameters were measured:

- Inflow (l/s)
- Water level/pressure in regulator well (mH<sub>2</sub>0/Pa)
- Water level/pressure in the outlet tank (mH<sub>2</sub>O/Pa)
- Outlet from the outlet tank (l/s)

These data have created curves shown in the Test Report, section 3 Test results (Appendix E).

During the test the average water level must be within 0.5 and 1.5mm/s, since this is common values in runoff systems.

#### 3.3.5 Additional parameters

#### 3.3.5.1 User manual

The verification criterion for the user manual is that the manual describes the use of the equipment adequately and is understandable for the typical test coordinator and test technician. This criterion was based on a number of specific points of importance, see Table 3-4 for the parameters to be included.

A description is complete if all essential steps are described, if they are illustrated by a figure or a photo, where relevant, and if the descriptions are understandable without reference to other guidance.

Mosbaek has provided:

- Centrifugal valve CE/V wet mounted (General information)
- Installation Instruction. Mosbaek Flow Regulators. Type CEV-KPS Sealing
- Maintenance and Inspection Instructions. Mosbaek Flow Regulators. Type CEV-KPS Sealing

| Parameter              | Complete<br>description | Summary<br>description | No description | Not relevant |
|------------------------|-------------------------|------------------------|----------------|--------------|
|                        | description             | description            |                |              |
| Product                |                         |                        |                |              |
| Principle of operation |                         |                        |                |              |
| Intended use           |                         |                        |                |              |
| Performance expected   |                         |                        |                |              |
| Limitations            |                         |                        |                |              |
|                        |                         |                        |                |              |
| Preparations           |                         |                        |                |              |
| Unpacking              |                         |                        |                |              |
| Transport              |                         |                        |                |              |
| Assembly               |                         |                        |                |              |
| Installation           |                         |                        |                |              |
| Function test          |                         |                        |                |              |
|                        |                         |                        |                |              |
| Operation              |                         |                        |                |              |
| Steps of operation     |                         |                        |                |              |
| Points of caution      |                         |                        |                |              |
| Accessories            |                         |                        |                |              |
| Maintenance            |                         |                        |                |              |
| Trouble shooting       |                         | $\checkmark$           |                |              |
|                        |                         |                        |                |              |
| Safety                 |                         |                        |                |              |
| Chemicals              |                         |                        |                |              |
| Power                  |                         |                        |                |              |

#### Table 3-4Evaluation of user manual.

#### 3.3.5.2 Required resources

The capital investment and the resources for operation and maintenance could be seen as the sustainability of the product and will be itemized based upon a determined design [3], see Table 3-5for the items that will be included.

The design basis consists of one installed CEV in an existing well. All cost items relevant for the Mosbaek CEVs are listed. Note that the actual cost for each item is not compiled and reported.

#### Table 3-5 List of capital cost items and operation and maintenance cost items per product unit.

| Item type                             | Item                                | Number/duration                |
|---------------------------------------|-------------------------------------|--------------------------------|
|                                       |                                     |                                |
| Capital                               |                                     |                                |
| Site preparation                      | None                                |                                |
| Buildings and land                    | None                                |                                |
| Equipment                             | The CEV and mounting from Mosbaek   | 1                              |
|                                       | Tightening material and bolts       |                                |
| Utility connections                   | Rain water sewer system and wells   | 1                              |
| Installation                          | To be installed by sewer contractor | 1 day                          |
| Start up/training                     |                                     |                                |
| Permits                               | None                                |                                |
|                                       |                                     |                                |
| Operation and maintenance             |                                     |                                |
| Materials, including chemicals        | None                                |                                |
| Utilities, including water and energy | None                                |                                |
| Labor                                 | Regular inspection and drainage of  | 1 day                          |
|                                       | sump/sand catcher                   |                                |
| Waste management                      | Sump/sand                           | As for other wells with no CEV |
| Permit compliance                     | None                                |                                |

Evaluation of the following subjects has been performed based on information gained from Mosbaek:

• <u>Resources used during production of the equipment in the technology</u>

The CEV and their mounting are produced from stainless steel, grade 1.4404/316L.

For the tested products incl. mounting the weights are:

CEV 1.4l/s@1.0m 100% :5.9 kgCEV 4.9l/s@1.5m 100%:11.5kgCEV 10.5l/s@2.0m 78%:21.5kgCEV 10.5l/s@2.0m 100%:25.1kg

80% of the steel on the world market is reused material. The main part of the steel in Denmark is imported from other European countries, while the rest is mainly from Taiwan, India and China. Depending on the distance the freight is by ship or by truck. For the European marked the transport is mainly by truck. Mosbaek purchases steel from Danish distributors such as: Dacapo Stainless, Lemvigh-Müller, Sanistål and Damstahl.

The average energy consumption for the final product is 4.1kWh/kg.

• Longevity of the equipment

The regulators are designed to last as long as the other components in a sewage system, approx. 50 years. A regulator will not need to be replaced unless inspection shows considerable wear and tear.

• <u>Robustness/vulnerability to changing conditions of use or maintenance</u>

The regulator is robust to changes in temperature and environment. A steeper slope on the characteristic curve gives robustness towards changes in pressure head. Larger orifice opening, compared to other competing solutions, give robustness with respect to clogging. Maintenance scheme should be adjusted according to changes in condition concerning the quality of the water. Maintenance is a visual check of the condition of the regulator and to remove signs of clogging. • <u>Reusability, recyclability (fully or partly) and end of life decommissioning and disposal</u>

A regulator can be reused in another location with similar conditions or adjusted to fit other conditions. If reuse is not possible, the regulator can be sold as scrap and molten into new steel. It is 100% is recyclable.

#### 3.3.5.3 Occupational health and environmental impact

The risks for occupational health and for the environment associated with the use of the products will be identified. A list of chemicals classified as toxic (T) or very toxic (Tx) for human health and/or environmentally hazardous (N) (in accordance with the directive on classification of dangerous substances [4]) will be compiled. The tightening material used for installation is chosen by the sewer contractor. The mainly used material is sealant tape or waterproof silicone, which are both unclassified.

All operations in wells are subject to safety risk, and standard safety precautions have to be taken accordingly.

## 3.4 Recommendation for the Statement of Verification

#### 3.4.1 Technology description

The technology verified is the vertical centrifugal flow regulator, CEV (**CE**ntrifugal **V**ertical) from Mosbaek. The flow regulator technology for extreme rainfall events is based on quickly reaching the maximum discharge flow, where it creates a vortex making it stay at or below this discharge flow while the remaining water is stored in the well. A schematic view of the CEV with inflow in the bottom is shown in Figure 3-2a.



Figure 3-2 A) Sketch of CEV flow regulator installed in well. B) Graphic showing the general vortex brake effect on water outflow, with CEVs operating at 78% and 100% efficiency and water inflow to well larger than outflow though CEV (well is filling up). Both provided by Mosbaek.

Figure 3-2b shows the flow through a CEV. With a 100% model, the maximum outlet ( $Q_{design}$ ) is met twice, first where the vortex is formed (the bump on the graph) and then at the specified  $H_{design}$ , where  $H_{design}$  is calculated from the invert of the discharge pipe to the maximum water level in the well. A 78% model is also shown; here the bump occurs at a flow of 78% of  $Q_{design}$ .

Mosbaek has selected four models to represent their CEV-series. The models are;

- CEV 1.4l/s @ 1.00m 100%
- CEV 4.9l/s @ 1.50 m 100%
- CEV 10.5l/s @ 2.00m 78%

• CEV 10.5l/s @ 2.00m - 100%

#### 3.4.2 Application

#### 3.4.2.1 Matrix

The CEV is installed before the combined system (with storm water and wastewater) and is restricting storm water inflow to the combined system. The verification covers storm water.

#### 3.4.2.2 Purpose

The purpose of the technology is to store storm water at appropriate places before entering the piping system during storm water events. The CEV is installed in wells and basins depending on the piping network.

#### 3.4.2.3 Conditions of operation and use

Maintenance is needed regularly as a visual check of the condition of the regulator and to remove signs of clogging.

#### 3.4.2.4 Verification parameters definition summary

Two types of parameters have been verified:

- 1. Outflow (l/s) at  $H_{bump}$  and  $H_{design}$
- 2. Flow reduction at H<sub>design</sub>

#### 3.4.3 Test and analysis design

The test was designed for this verification. No existing data have been included.

#### 3.4.3.1 Laboratory or field conditions

The test was performed at a test set-up at Mosbaek's premises in Koege, Denmark, see Figure 3-3.

The figure is suggested to be an appendix to the Statement of Verification.





The set-up consists of a well (regulator well) placed on a base; the CEV regulator is mounted in this well. The regulator well is in direct connection with a large diameter tank (inlet tank), through a pipe, positioned just opposite the CEV outlet. The water levels in the regulator well and the inlet tank are accordingly identical. This set-up is established in order to secure that the

increase of the water level in the regulator well can be controlled and limited still with a reasonable high flow rate to the well. The outlet connection goes through the CEV in the regulator well to the outlet tank. A pressure transducer is mounted in the base of the regulator well. On the base of the regulator well, a Plexiglas riser is mounted in order to follow the water level in the well during testing.

The flow to the inlet tank is fed at the top of the tank through a pipe placed internally in the tank by means of a pump, which is pumping water from a feeding tank. The flow from the feeding tank to the inlet tank is measured by means of the flowmeter. The water level in the feeding tank is kept constant by pumping water from a central reservoir to the feeding tank; an overflow weir ensures that the water level in this tank is kept almost constant. In this way, it is possible to keep an almost constant pressure head at the pump and thus an almost constant flow.

From the regulator well, the water flows through the CEV to the outlet tank. The outlet tank has a pressure transducer monitoring the water level in this tank. The outlet flow from the outlet tank is measured by means of a flowmeter.

#### 3.4.3.2 Matrix composition

The used water is from an outdoor reservoir.

#### 3.4.3.3 Test and analysis parameters

The following test-runs were performed.

| CEV model                  | Flow 1 | Flow 2 | Flow 3 | Flow 4 | Flow 4' | Flow 4" |
|----------------------------|--------|--------|--------|--------|---------|---------|
|                            |        |        |        |        |         |         |
| CEV 1.4l/s @ 1.00m - 100%  | 1.79   | 3.12   | 4.80   | 6.31   | 6.18    | 6.25    |
| CEV 4.9l/s @ 1.50 m - 100% | 5.89   | 6.52   | 8.20   | 9.99   |         |         |
| CEV 10.5l/s @ 2.00m - 78%  | 8.60   | 9.77   | 11.40  | 12.97  |         |         |
| CEV 10.5l/s @ 2.00m - 100% | 11.32  | 12.07  | 13.75  | 15.24  |         |         |
| Orifice                    | 13.72  |        |        |        |         |         |

Tests of the performance at  $H_{bump}$  and  $H_{design}$  are marked in light orange.

Test of the flow reduction at H<sub>design</sub> is done by comparing the results from the hatched test runs.

The repetition of CEV 1.4l/s @ 1.00m – 100% (dark blue marking) is done to see if there is more than 10 % variation between runs with the same flow. There was very limited variation; therefore the repetition was not done for other test runs.

#### 3.4.3.4 Test and analysis methods summary

The inflow and outflow from the CEV was measured by the use of flowmeters and pressure transducers as described above.

#### 3.4.3.5 Parameters measured

- Inflow (l/s)
- Water level/pressure in regulator well (mH<sub>2</sub>0/Pa)
- Water level/pressure in the outlet tank (mH<sub>2</sub>O/Pa)
- Outlet from the outlet tank (l/s)

Outflow from CEV is calculated by using the following equation:

$$Q_{outflow} = Q_{overflow} + \frac{\Delta Hout \times Aout \times 1000}{\Delta t}$$

 $\begin{array}{l} Q_{outflow}: \mbox{Flow out of CEV (l/s)} \\ Q_{overflow}: \mbox{Overflow from the outlet tank (l/s)} \\ A_{out}: \mbox{Surface area in the outlet tank+riser (m^2)} \\ H_{out}: \mbox{Pressure head in the outlet tank (mH_2O)} \\ \Delta t: \mbox{Time for changing } H_{out} \mbox{ with } \Delta H_{out} \mbox{ (s)} \end{array}$ 

### 3.4.4 Verification results

#### 3.4.4.1 Performance parameters

The results of the verification with regards to flow at  $H_{bump}$  ( $Q_{bump}$ ) and at  $H_{design}$  ( $Q_{design}$ ) are listed in the table.

Based on the results from a test with 1.4l/s@1.00m - 100% and a corresponding orifice, it can be stated that Mosbaek CEVs are verified to reduce the flow by a factor of 4.45 at  $Q_{design}$ .

| CEV model                  | Qt                                         | oump                | Q <sub>des</sub>       | ign                  |
|----------------------------|--------------------------------------------|---------------------|------------------------|----------------------|
|                            | Mean <sup>+</sup> and range Deviation from |                     | Mean and range         | Deviation from       |
|                            | (l/s)                                      | (l/s) model charac- |                        | model character-     |
|                            |                                            | teristics (%)       |                        | istics (%)           |
| CEV 1.4l/s @ 1.00m - 100%  | 1.34 (1.22* - 1.45)                        | -4.3 (-13* - 3.6)   | 1.43 (1.42 - 1.45)     | 2.1 (1.4 - 3.6)      |
| CEV 4.9l/s @ 1.50 m - 100% | 4.74 (4.50 - 5.04)                         | -3.3 (-8.2 – 2.9)   | 4.78 (4.76 - 4.80)     | -2.4 (-2.9 - (-2.0)) |
| CEV 10.5l/s @ 2.00m - 78%  | 8.17 (7.57 - 8.74)                         | -0.2 (-7.6 – 6.7)   | 10.11 (10.09 - 10.12)# | -3.7 (-3.9 - (-3.6)) |
| CEV 10.5l/s @ 2.00m - 100% | 10.18 (9.75 - 10.67)                       | -3.0 (-7.1 – 1.6)   | 10.56 (10.55 - 10.56)  | 0.6 (0.5 – 0.6)      |
| Orifice                    | N/A                                        | N/A                 | 6.36                   | N/A                  |

\*) Be aware that the results of Q<sub>bump</sub> are uniquely influenced by Q<sub>inflow</sub>

\*) For this flow the water level rise was only 0.19 mm/s, while the operational requirement was >0.5 mm/s, this is an explanation for the deviation from the expected.

#) Based on two tests only.

#### 3.4.4.2 Operational parameters

No additional operational parameters than the performance parameters were measured.

This subchapter will therefore not be included in the Statement of Verification.

#### 3.4.4.3 Environmental parameters

No additional environmental parameters than the performance parameters were measured.

This subchapter will therefore not be included in the Statement of Verification.

#### 3.4.4.4 Additional parameters

The user manual and other descriptions were described as complete.

Application of the CEV does not give rise to any special risk or contact to hazardous substances. Though installation in the well is subject to safety risk as all operations in wells, and standard safety precautions therefore have to be taken accordingly.

The CEVs are produced of stainless steel. Today 80 % of the stainless steel on the marked is recycled. It is imported from Europe and certain places in Asia. The tested CEVs contain from 6-25 kg stainless steel, and 4.1kWh/kg steel is used in the production. The CEVs are reusable or 100 % recyclable. They have a lifetime of 50 years. The above information is obtained from Mosbaek A/S.

#### 3.4.5 Additional information

The CEV is designed to be effective within a flow range until a certain amount of water is stored in the connected well or basin. This means that if a storm water event exceeds the design criteria, the well or basin where the CEV is located will float over. This situation is not included in the verification.

The CEV is designed with the largest possible opening at the given hydraulic situation. The CEV is most often installed as detachable and if required, obstacles can be removed in this way. At locations with many obstacles in the water, the CEV can be equipped with a grid. All tests are carried out with water without obstacles.

Industrial wastewater and backwater (backwards flow through the CEV) are not included, nor are rapid changes in head and flow. Such changes may occur in special situations (e.g. if pumps are started or stopped).

Characteristics obtained from the experiments are only 100 % valid for applications which have full geometric similarity with the set up defined in Figure 3-2a. For applications with geometries which differ from this figure, the actual characteristic can deviate from the characteristic found from the verification experiment.

#### 3.4.6 Quality assurance and deviations

Prior to testing was performed leakage test and review of calibration certificates for pressure transducers and flowmeters. In addition, calibration tests of pressure transducers were performed on both inlet and outlet side. During testing, internal and external test system audits were performed by DHI and ETA Danmark.

# 4 Quality assurance

The personnel and experts responsible for quality assurance as well as the different quality assurance tasks can be seen in Table 4-1. All relevant reviews are prepared using the DANETV review report template [5]. Audit during testing has been performed.

Table 4-1 QA plan for the verification

|                                | Internal expert | Verification body |         | Proposer           | External experts |
|--------------------------------|-----------------|-------------------|---------|--------------------|------------------|
|                                |                 |                   |         |                    |                  |
| Initials                       | MJK             | MTA               | PF      | Mosbaek            | TL/IW            |
| Tasks                          |                 |                   |         |                    |                  |
| Specific verification protocol | Review          |                   |         | Review and approve | Review           |
| Test plan                      |                 | Review            | Approve | Review and approve |                  |
| Test system at test site       |                 |                   | Audit   |                    |                  |
| Test report                    |                 | Review            |         | Review             |                  |
| Verification report            | Review          |                   |         | Review             | Review           |
| Statement of Verification      |                 |                   |         | Acceptance         | Review           |

Internal review was conducted by Morten Just Kjølby (MJK) and a test system audit was conducted following general audit procedures by certified auditor Peter Fritzel (PF).

Only the verification protocol and verification report require external review according to EU ETV pilot programme GVP [1]. For the verification protocol, external review was performed by Torben Larsen (TL), while the verification report and Statement of Verification have been reviewed by Ian Walker (IW).

The verification body has reviewed and approved the test plan and reviewed the test report. The reviews were performed by Mette Tjener Andersson (MTA), while the approval was given by Peter Fritzel (PF).

# 5 References

- 1. EU Environmental Technology Verification pilot programme. General Verification Protocol. Version 1.1 July 7th, 2014.
- 2. ETA Danmark. ETV Verifikation. I30.11, Environmental Technology Verification. 20-11-2013.
- 3. Gavaskar, A. and Cumming, L.: Cost Evaluation Strategies for Technologies Tested under the Environmental Technology Verification Program. 2001. Battelle.
- 4. European Commission: Commission Directive on classification, packaging and labelling of dangerous substances. 2001/59/EC. 2001.
- 5. DANETV Test Centre Quality Manual, 2013.08.13

APPENDICES



Terms and definitions

The terms and definitions used by the verification body are derived from the EU ETV General Verification Protocol, ISO 9001 and ISO 17020.

| Term                                   | DANETV                                                                                                                                                                                                                 | Comments on the DANETV approach                                                                                                                                                       |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accreditation                          | Meaning as assigned to it by Regulation (EC) No 765/2008                                                                                                                                                               | EC No 765/2008 is on setting out the require-<br>ments for accreditation and market surveil-<br>lance relating to the marketing of products                                           |
| Additional parameter                   | Other effects that will be described but are considered secondary                                                                                                                                                      | None                                                                                                                                                                                  |
| Amendment                              | Is a change to a specific verification protocol or<br>a test plan done before the verification or test<br>step is performed                                                                                            | None                                                                                                                                                                                  |
| Application                            | The use of a product specified with respect to<br>matrix, purpose (target and effect) and limita-<br>tions                                                                                                             | The application must be defined with a preci-<br>sion that allows the user of a product verifica-<br>tion to judge whether his needs are comparable<br>to the verification conditions |
| DANETV                                 | Danish centre for verification of environmental technologies                                                                                                                                                           | None                                                                                                                                                                                  |
| Deviation                              | Is a change to a specific verification protocol or<br>a test plan done during the verification or test<br>step performance                                                                                             | None                                                                                                                                                                                  |
| Evaluation                             | Evaluation of test data for a technology product for performance and data quality                                                                                                                                      | None                                                                                                                                                                                  |
| Experts                                | Independent persons qualified on a technology in verification                                                                                                                                                          | These experts may be technical experts, QA<br>experts for other ETV systems or regulatory<br>experts                                                                                  |
| General verification protocol<br>(GVP) | Description of the principles and general pro-<br>cedure to be followed by the EU ETV pilot pro-<br>gramme when verifying an individual envi-<br>ronmental technology.                                                 | None                                                                                                                                                                                  |
| Matrix                                 | The type of material that the technology is intended for                                                                                                                                                               | Matrices could be soil, drinking water, ground<br>water, degreasing bath, exhaust gas condensate<br>etc.                                                                              |
| Operational parameter                  | Measurable parameters that define the applica-<br>tion and the verification and test conditions.<br>Operational parameters could be production<br>capacity, concentrations of non-target com-<br>pounds in matrix etc. | None                                                                                                                                                                                  |
| (Initial) performance claim            | Proposer claimed technical specifications of<br>product. Shall state the conditions of use under<br>which the claim is applicable and mention any<br>relevant assumption made                                          | The proposer claims shall be included in the<br>ETV proposal. The initial claims can be devel-<br>oped as part of the quick scan.                                                     |

| Term                                                     | DANETV                                                                                                                                                                                                                                                                                                                        | Comments on the DANETV approach                                                                                                                                                                                                                                    |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Performance parameters (re-<br>vised performance claims) | A set of quantified technical specifications rep-<br>resentative of the technical performance and<br>potential environmental impacts of a technolo-<br>gy in a specified application and under speci-<br>fied conditions of testing or use (operational<br>parameters).                                                       | The performance parameters must be estab-<br>lished considering the application(s) of the<br>product, the requirements of society (legisla-<br>tive regulations), customers (needs) and pro-<br>poser initial performance claims                                   |
| Procedure                                                | Detailed description of the use of a standard or<br>a method within one body                                                                                                                                                                                                                                                  | The procedure specifies implementing a stand-<br>ard or a method in terms of e.g.: equipment<br>used                                                                                                                                                               |
| Proposer                                                 | Any legal entity or natural, which can be the<br>technology manufacturer or an authorised<br>representative of the technology manufacturer.<br>If the technology manufactures concerned<br>agree, the proposer can be another stakeholder<br>undertaking a specific verification programme<br>involving several technologies. | Can be vendor or producer                                                                                                                                                                                                                                          |
| Purpose                                                  | The measurable property that is affected by the product and how it is affected.                                                                                                                                                                                                                                               | The purpose could be reduction of nitrate con-<br>centration, separation of volatile organic com-<br>pounds, reduction of energy use (MW/kg) etc.                                                                                                                  |
| (Specific) verification protocol                         | Protocol describing the specific verification of a technology as developed applying the principles and procedures of the EU GVP and the quality manual of the verification body.                                                                                                                                              | None                                                                                                                                                                                                                                                               |
| Standard                                                 | Generic document established by consensus<br>and approved by a recognised standardization<br>body that provides rules, guidelines or charac-<br>teristics for tests or analysis                                                                                                                                               | None                                                                                                                                                                                                                                                               |
| Test/testing                                             | Determination of the performance of a product<br>for measurement/parameters defined for the<br>application                                                                                                                                                                                                                    | None                                                                                                                                                                                                                                                               |
| Test performance audit                                   | Quantitative evaluation of a measurement sys-<br>tem as used in a specific test.                                                                                                                                                                                                                                              | E.g. evaluation of laboratory control data for<br>relevant period (precision under repeatability<br>conditions, trueness), evaluation of data from<br>laboratory participation in proficiency test and<br>control of calibration of online measurement<br>devises. |
| Test system audit                                        | Qualitative on-site evaluation of test, sampling<br>and/or measurement systems associated with<br>a specific test.                                                                                                                                                                                                            | E.g. evaluation of the testing done against the requirements of the specific verification proto-<br>col, the test plan and the quality manual of the test body.                                                                                                    |
| Test system control                                      | Control of the test system as used in a specific test.                                                                                                                                                                                                                                                                        | E.g. test of stock solutions, evaluation of stabil-<br>ity of operational and/or on-line analytical<br>equipment, test of blanks and reference tech-                                                                                                               |
| Term         | DANETV                                                                                                                                                                                                                                                                             | Comments on the DANETV approach |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|              |                                                                                                                                                                                                                                                                                    | nology tests.                   |
| Verification | Provision of objective evidence that the tech-<br>nical design of a given environmental technolo-<br>gy ensures the fulfilment of a given perfor-<br>mance claim in a specified application, taking<br>any measurement uncertainty and relevant<br>assumptions into consideration. | None                            |

# APPENDIX B

Specific Verification Protocol





# Mosbaek CEV flow regulator

# **Specific Verification Protocol**



Mosbaek A/S

Specific Verification Protocol February 2015

| This report has been prepared under the DHI Business Management System certified by DNV to comply with                                         |          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| Quality Management                                                                                                                             |          |  |  |
| ISO 9001                                                                                                                                       | ISO 9001 |  |  |
| Quality<br>Management<br>System<br>certified according to<br>DS/EN ISO 9001<br>by<br>Det Norske Veritas,<br>Business Assurance,<br>Danmark A/S |          |  |  |

| Approved by<br>Sten Lindberg (Head of department, DHI) |
|--------------------------------------------------------|
| Slidling                                               |

Approved by Peter Fritzel (Verification responsible, ETA Danmark)

Peter Fritsel

# Mosbaek CEV flow regulator

Specific Verification Protocol

Prepared forMosbaek A/SRepresented byTorben Krejberg, Technical Director



CEV flow regulator

| Project No     | 11530013              |
|----------------|-----------------------|
| Classification | Restricted            |
|                | Final version, rev. 3 |

| Authors | Mette Tjener Andersson, DHI |  |
|---------|-----------------------------|--|
|         |                             |  |
|         |                             |  |
|         |                             |  |

## Contents

| <b>1</b><br>1.1<br>1.2<br>1.3<br>1.4<br>1.5                                                                                        | Introduction<br>Name of technology<br>Name and contact of proposer<br>Name of verification body/verification responsible<br>Verification organisation including experts<br>Verification process                                                                                                                                                                                                                                                                                                                                                           | <b>.3</b><br>3<br>3<br>3<br>3<br>4                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                  | Overall description of technology group/technology type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 5                                                                                                                                            |
| <b>3</b><br>3.1<br>3.1.1<br>3.1.2<br>3.1.3<br>3.2<br>3.2.1<br>3.2.1.1<br>3.2.1.2<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.3<br>3.4 | Description of the specific technology for verification         Application and performance parameter definitions         Matrix/matrices         Purpose(s)         Exclusions         Performance parameters for verification         Initial vendor claims         Flow at H <sub>bump</sub> and H <sub>design</sub> Flow reduction at H <sub>design</sub> Regulatory requirements         Application based needs         State-of-the-art performance         Selected performance parameters         Operational parameters                         | .6<br>9<br>9<br>9<br>10<br>10<br>10<br>10<br>11<br>11<br>12<br>12<br>12<br>13                                                                  |
| 4                                                                                                                                  | Existing data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13<br>14                                                                                                                                       |
| <b>5</b><br>5.1<br>5.1.1<br>5.1.2<br>5.1.3<br>5.1.4<br>5.1.5<br>5.2<br>5.3<br>5.4<br>5.5                                           | Requirements on test design and data quality       Test design         Test design       Task 1 - Design of test facility         Task 1 - Design of test facility       Task 2 - Installation of facility         Task 2 - Installation of facility       Task 3 - Pre-testing         Task 3 - Pre-testing       Task 4 - Verification testing         Task 5 - Documentation of verification       Reference analysis and measurements         Data management       Quality assurance         Test report requirements       Test report requirements | <b>15</b><br>15<br>15<br>16<br>16<br>16<br>16<br>17<br>17                                                                                      |
| 6<br>6.1<br>6.1.1<br>6.1.2<br>6.2<br>6.3<br>6.4<br>6.4.1<br>6.4.2<br>6.4.3                                                         | Evaluation       7         Calculation of performance parameters       7         Flow at H <sub>bump</sub> and H <sub>design</sub> 7         Flow reduction at H <sub>design</sub> 7         Evaluation of test quality       7         Operational parameter summary       7         Additional parameter summary       7         User manual       7         Required resources       7         Occupational health and environmental impact       7                                                                                                    | <ol> <li>19</li> <li>19</li> <li>20</li> <li>21</li> <li>21</li> <li>21</li> <li>21</li> <li>21</li> <li>21</li> <li>21</li> <li>22</li> </ol> |
| 7                                                                                                                                  | Verification schedule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23                                                                                                                                             |
| 8<br>9                                                                                                                             | Quality assurance         References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24<br>26                                                                                                                                       |

## **Figures**

| Figure 1-1 | Organisation of the verification and test                                                                                                                                                                        |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2-1 | Sketch of sewerage system without and with flow regulator. Figures provided by Mosbaek                                                                                                                           |
| Figure 3-1 | Sketch of CEV flow regulator installed in well. Sketch provided by Mosbaek                                                                                                                                       |
| Figure 3-2 | Schematic test set-up7                                                                                                                                                                                           |
| Figure 3-3 | Graphic showing the general vortex brake effect on water outflow, with CEVs operating at 78% and 100% efficiency and water inflow to well larger than outflow though CEV (well is filling up). Graph provided by |
|            | Mosbaek                                                                                                                                                                                                          |
| Figure 3-4 | Coverage range of Mosbaek CEVs. The crosses mark the selected CEVs for verification testing CEV 1.4l/s @                                                                                                         |
|            | 1.00m, CEV 4.9l/s @ 1.50m and CEV 10.5l/s @ 2.00m. Graph provided by Mosbaek                                                                                                                                     |
| Figure 3-5 | Outlet flow from well. Red curve is outflow through a 100% Mosbaek CEV, while dark blue line is outflow                                                                                                          |
|            | through an orifice with the same outlet diameter as the CEV. The curl on the dark blue line is the transition                                                                                                    |
|            | point from partly filled pipe to full pipe. Graph provided by Mosbaek11                                                                                                                                          |
| Figure 6-1 | Points to be identified during evaluation of results20                                                                                                                                                           |

## Tables

| Table 1-1 | Simplified overview of the verification process.                                                   | 4  |
|-----------|----------------------------------------------------------------------------------------------------|----|
| Table 3-1 | Specific performance claims from the proposer on Q <sub>bump</sub> and Q <sub>design</sub>         | 10 |
| Table 3-2 | Specific performance claims by the proposer on flow reduction compared to no CEV installed in well | 11 |
| Table 5-1 | Test design for this verification                                                                  | 15 |
| Table 6-1 | Criteria for evaluation of user manual.                                                            | 21 |
| Table 6-2 | List of capital cost items and operation and maintenance cost items per product unit               | 22 |
| Table 6-3 | Compilation of classified chemicals used during product operation.                                 | 22 |
| Table 7-1 | Verification schedule                                                                              | 23 |
| Table 8-1 | QA plan for the verification                                                                       | 24 |

## Appendices

A Terms and definitions

B Claimed performance of Mosbaek CEVs

**Archiving:** All standard project files (documents, etc) are archived at ETA Danmark. Any other project files (set-up files, forcing data, model output, etc) are archived with the institute performing the tests or analysis.

## 1 Introduction

Environmental technology verification (ETV) is an independent (third party) assessment of the performance of a technology or a product for a specified application under defined conditions and quality assurance.

The objective of this verification is to evaluate the performance of a vertical centrifugal flow regulator for storm water.

### 1.1 Name of technology

Vertical centrifugal flow regulator, CEV (CEntrifugal Vertical), produced by Mosbaek A/S.

Mosbaek produces CEVs for flow capacities from 0.2 l/s to 80 l/s. The verification will cover verification test of four specific CEV dimensions within this range.

### 1.2 Name and contact of proposer

Mosbaek A/S Værkstedsvej 20 4600 Køge Denmark

Contact: Torben Krejberg, e-mail tk@mosbaek.dk, phone +45 5663 8580

Mosbaek website: www.mosbaek.dk

### 1.3 Name of verification body/verification responsible

ETA Danmark A/S Göteborg Plads 1 2150 Nordhavn Denmark

Verification responsible: Peter Fritzel (PF), email: pf@etadanmark.dk, phone +45 7224 5900

Appointed verification expert: Mette Tjener Andersson (MTA), e-mail mta@dhigroup.com, phone +45 4516 9148

### 1.4 Verification organisation including experts

The verification will be conducted by the ETA Danmark A/S in cooperation with Danish Centre for Verification of Climate and Environmental Technologies, DANETV, which performs independent verification of technologies and products for the reduction of climate changes and pollution.

The verification is planned and conducted to satisfy the requirements of the ETV scheme established by the European Union (EU ETV Pilot Programme) [1].

The verification will be coordinated and supervised by ETA Danmark, assisted by an appointed verification expert, while tests will be coordinated and supervised by DHI with the participation

of the proposer, Mosbaek. The testing will be conducted in the workshop of Mosbaek in Køge, where a test facility has been constructed.

An internal and an external expert are assigned to provide independent expert review of the planning, conducting and reporting of the verification and tests:

- Internal technical expert: Morten Just Kjølby (MJK), DHI, Urban and Industry Dept., e-mail mjk@dhigroup.com
- External technical expert: Professor Torben Larsen (TL), Aalborg University, Department of Civil Engineering, tl@civil.aau.dk

The tasks assigned to each expert are given in more detail in section 8 Quality assurance.

The relationships between the organisations related to this verification and test are given in Figure 1-1.



Figure 1-1 Organisation of the verification and test.

## 1.5 Verification process

The principles of operation of the DANETV verification process are given in Table 1-1. As it can be seen, verification and testing are divided between the verification and the test body.

| Phase             | Responsible       | Document                       |
|-------------------|-------------------|--------------------------------|
| Preliminary phase | Verification body | Quick Scan                     |
|                   |                   | Contract                       |
|                   |                   | Specific verification protocol |
| Testing phase     | Test body         | Test plan                      |
|                   |                   | Test report                    |
| Assessment phase  | Verification body | Verification report            |
|                   |                   | Statement of Verification      |

Table 1-1 Simplified overview of the verification process.

Quality assurance is carried out by an expert group of internal and external technical experts. Two audits of the test system will be performed, starting with an internal audit by the test body followed by an external audit by the DANETV verification body under ETA Danmark. Reference for the verification process is the EU ETV General Verification Protocol [1] and ETA Danmarks internal procedure [2]. A Statement of Verification will be issued by the DANETV verification body after completion of the verification. The final verification report will include the other documents prepared as appendices

#### Overall description of technology group/technology type 2

Extreme rainfall events are often characterised by being short and local, and for short periods causing full-flowing pipes conditions and surcharges to the surface or the recipients. The overload of the systems hydraulic capacity is expected to increase due to climate changes. One way of solving the problem can be to retain the excess water in other places of the system during the relevant time interval.

A flow regulator is efficient in most precipitation situations and does not require any installation of larger pipes or basins.

The flow regulator technology is based on quickly reaching the maximum discharge flow and staying at or below this value. The maximum discharge flow is the allowable amount of water passing through the regulator without causing any problems to the downstream pipe network.

Generally speaking, the purpose of a flow regulator is to protect the low-lying parts of the sewage system (downstream) against overloading and flooding. One of the specific qualities of the flow regulator is that it allows liquid to pass further down in the sewage system at a predetermined maximum amount per time unit, regardless of the variation in feed flow and the water level immediately before the regulator. Flow regulators can be applied inline in combined systems or before, restricting the amount of storm water before it enters the system, see Figure 2-1 for more details.



Sewerage system without flow control





Sewerage system with flow control

Sewerage system and basin with flow control.



flooding!

## 3 Description of the specific technology for verification

The technology to be verified is the vertical centrifugal flow regulator, CEV (**CE**ntrifugal **V**ertical) from Mosbaek. It is a wet mounted vortex flow regulator for storm water with design flows between 0.2-80 l/s.

The CEV regulates the water due to the vortex created when sufficient water flow is going through the unit. The vortex is created when the water flow reaches a certain flow rate. The vortex slows down the water flow through the CEV. In this way the water is stored in the well and the water flow is then kept almost constant. A schematic view of the CEV in operation is shown in Figure 3-1.

To avoid the risk of blocking and to minimise the need for service and maintenance the CEV is designed to have no moving parts. Furthermore, its passageway is large in order to minimise its resistance in normal, daily runoff situations.

During low flow conditions, water entering through the inlet of the CEV passes through the valve with negligible pressure drop. During high flow conditions, a vortex flow pattern develops within the CEV creating an air filled core. This phenomenon restricts and throttles flow through the device, creating back pressure immediately upstream of its discharge.

The CEV can be designed to fulfil different design criteria. The specific design criteria are defined by the client and Mosbaek in cooperation according to the design of the existing or planned piping network. The creation of the vortex in the CEV causes a speed reduction of the outflow, Q in Figure 3-1, allowing the well to be used for water storage during a storm event.



Figure 3-1 Sketch of CEV flow regulator installed in well. Sketch provided by Mosbaek.

The CEVs to be verified will have inflow in the bottom of the regulator, as shown in Figure 3-1, this is to ensure proper and equal hydraulic conditions. In addition Mosbaek will in a standard installation ensure that inlet and outlet are located at the same level in the well (as depicted on Figure 3-1). In order to be able to control the water level rise in the well optimally, the regulator well is connected to an inlet tank, so that the main part of the inlet flow is lead to the inlet tank, see also the sketch in Figure 3-2. As the regulator well and the inlet tank are direct connected the heads in the two compartments will be the same. This is done to ensure that the average increase of water level is kept within 0.5 and 1,5mm/s, which are common values in runoff systems. These conditions shall be used during testing.





Figure 3-3 shows the flow through a CEV. In the 100% case the maximum outlet ( $Q_{design}$ ) is met twice, first where the vortex is formed (the bump on the graph) and then at the specified H<sub>design</sub>, where H<sub>design</sub> is calculated from the invert of the discharge pipe to the maximum water level in the well. A 78% case (a smaller CEV in a well with same height) with the same H<sub>design</sub> is also shown; here the bump occurs at a flow of 78% of Q<sub>design</sub>.





The optimal solution (100%), where  $Q_{bump}$  equals  $Q_{design}$ , gives less restriction at low heads allowing a better flow during normal operating situations and thereby less risk of blocking downstream.

Mosbaek have selected four specific CEV-models to represent their CEV technology, namely:

CEV 1.4l/s @ 1.00m - 100% CEV 4.9l/s @ 1.50m - 100% CEV 10.5/s @ 2.00m - 78% CEV 10.5l/s @ 2.00m - 100%

The name of the CEV indicates the designed maximum flow of for example 1.4l/s and the correlating maximum pressure height of for example 1.00 m. The percentage (100% and 78%) indicates the percentage of the design flow at the point/bump where the vortex is formed.

In Figure 3-4 is shown the coverage of Mosbaeks CEVs, while the three selected flows and pressure heights for verification testing are pointed out.



Figure 3-4 Coverage range of Mosbaek CEVs. The crosses mark the selected CEVs for verification testing CEV 1.41/s @ 1.00m, CEV 4.91/s @ 1.50m and CEV 10.51/s @ 2.00m. Graph provided by Mosbaek.

## 3.1 Application and performance parameter definitions

The intended application of the technology for verification is defined in terms of the matrix and the purpose.

### 3.1.1 Matrix/matrices

The CEV is for storm water and certain types of industrial wastewaters. The CEV is installed before the combined system (with storm water and wastewater), and is thereby restricting the amount of storm water into the combined system. The verification therefore only covers the matrix storm water.

### 3.1.2 Purpose(s)

The purpose of the technology is to store storm water at appropriate places before entering the piping system during storm water events. The CEV is installed in wells and basins depending on the piping network.

#### 3.1.3 Exclusions

The CEV is designed to be effective within a flow range until a certain amount of water is stored in the connected well or basin. This means that if a storm water event exceeds the design criteria, the well or basin where the CEV is located will float over. This situation is not included in the verification.

The CEV is designed with the largest possible opening at the given hydraulic situation. The CEV is most often installed as detachable and if required obstacles can in that way be removed. At locations with many obstacles in the water the CEV can be equipped with a grid. All tests are carried out with water without any obstacles.

As mentioned, industrial wastewater as matrix is not included, further is backwater (backwards flow through the CEV) not included nor is rapid changes in head and flow. Such changes may occur in special situations (e.g. if pumps are started or stopped).

Characteristics obtained from the experiments are only 100 % valid for applications which have full geometric similarity with the verification set up defined in figure 3–1. For applications with

geometries which differs from this figure the actual characteristic can deviate from the characteristic found from the verification experiment.

### 3.2 Performance parameters for verification

The performance parameters for the verification comprise parameters describing for example the regulatory requirements or assessing the equipment performance, water quality and so on. Performance or quality parameters may include chemical, physical and biological parameters.

### 3.2.1 Initial vendor claims

Mosbaek has two types of claims for their CEVs.

#### 3.2.1.1 Flow at H<sub>bump</sub> and H<sub>design</sub>

Mosbaek has specified the performance of four selected model of the CEV through performance graphs and specified the flowing specific claims<sup>1</sup>:

| 100% model: | $Q_{design} \pm 5\%$ is met at $H_{bump}$ and $H_{design}$                                     |  |
|-------------|------------------------------------------------------------------------------------------------|--|
| X% model:   | X% of $Q_{design} \pm 5\%$ is met at $H_{bump}$<br>$Q_{design} \pm 5\%$ is met at $H_{design}$ |  |

The graphs are included in Appendix B. Specific values for each of the four selected CEVs are listed in Table 3-1.

Table 3-1 Specific performance claims from the proposer on Q<sub>bump</sub> and Q<sub>design</sub>.

| CEV model                  | Q <sub>bump</sub> (l/s) | Q <sub>design</sub> (I/s) |
|----------------------------|-------------------------|---------------------------|
| CEV 1.4l/s @ 1.00m - 100%  | 1.4 ±5%                 | $1.4 \pm 5\%$             |
| CEV 4.9l/s @ 1.50 m - 100% | 4.9 ±5%                 | 4.9 ±5%                   |
| CEV 10.5l/s @ 2.00m - 78%  | 8.2 ±5%                 | 10.5 ±5%                  |
| CEV 10.5l/s @ 2.00m - 100% | 10.5 ±5%                | 10.5 ±5%                  |

### 3.2.1.2 Flow reduction at H<sub>design</sub>

Secondly Mosbaek has specified their claimed reduction of the flow at  $H_{design}$  compared to a well with no flow regulator (equal to a hole in a straight wall, with no additional piping). The method to determine the reduction of the flow is shown in Figure 3-5.

 $<sup>^1</sup>$  For details on the parameters  $Q_{\text{design}}$  ,  $H_{\text{bump}}$  and  $H_{\text{design}}$  consult Figure 3-3 and the describing text.





Mosbaek claims the following:

#### A Mosbaek CEV 100% model can reduce the flow by a factor of 4.25 at Qdesign

Perform tests where the test well is filled up to  $H_{design}$  with no CEV will require very high water flow which are not possible to have in the test set-up, except for the smallest of the CEVs to be tested. Therefor this claim will be verified using the smallest of the four CEVs used in the tests, specific performance claim is listed in Table 3-2.

Table 3-2 Specific performance claims by the proposer on flow reduction compared to no CEV installed in well.

| CEV model                 | Orifice                                                                     | Flow reduction factor at H <sub>design</sub> |
|---------------------------|-----------------------------------------------------------------------------|----------------------------------------------|
| CEV 1.4l/s @ 1.00m - 100% | Diameter corresponding to the smallest opening of CEV 1.4l/s @ 1.00m – 100% | 4.25                                         |

### 3.2.2 Regulatory requirements

There are no regulatory requirements for flow regulators.

### 3.2.3 Application based needs

For the user of the CEV it is important that the outflow is kept below a maximum flow rate ( $Q_{de-sign}$ ) for as long time as possible during a storm event.

According to Mosbaek pressure heights in standard well is between 1.1-2 m, while typical flows for such wells are 1-20 l/s, as indicated in Figure 3-4.

### 3.2.4 State-of-the-art performance

On the market there are several types of similar vertical flow regulators for storm water. Only one of the vendor homepages consulted have specified the performance towards  $Q_{design}$  for specific CEV models like Mosbaek has in Table 3-1. Umwelt und Fluid-Technik claims a precision of  $\pm 5$  % on  $Q_{design}$  at the specified  $H_{design}$  [6].

Furthermore, two similar technologies have stated that they have been WRc approved [7,8]. The WRc-approval process includes [9]:

- A review of hydraulic performance, including hydraulic testing and Computational Fluid Dynamics (CFD).
- A review of the design procedure, including the suitability assessment of the mathematical modelling.
- An audit of production facilities, including a review of quality control procedures.
- An audit of installation procedures for flow regulator, including witnessing of installation and collection of feedback from end users.

One of the tests is described to be performed at flow rates of 5 and 20 l/s [9]. The WRc certificate states that the product meets the requirements - but unfortunately there is no reference to the requirements [7].

In addition, one of these technologies is BBA approved under the development phase [8,10]. None of the references include any specifications on the requirements for obtaining this approval.

Both WRc and BBA are national British approval programmes.

A few flow regulator producers have claimed that they have a larger outlet diameter than an orifice plate reducing the risk of blockage [11,12,13]. These numbers are ranging from a 200 to a 600% larger opening. However, the producers have not specified the corresponding flow reduction, compared to no flow regulator.

### 3.2.5 Selected performance parameters

There is no regulation to fulfil for this technology and no need has been found to add any additional performance parameters to those initially selected by the proposer. The initial claims from the proposer are matching the claims from other vendors. The performance claims are therefore selected to be the claims provided by the proposer and listed in Section 3.2 Performance parameters for verification.

## 3.3 Operational parameters

During operation the following parameters shall be measured:

- Inflow (l/s)
- Water level/pressure in regulator well (mH<sub>2</sub>O/Pa)
- Water level/pressure in the outlet tank (mH<sub>2</sub>0/Pa)
- Outflow from the outlet tank (l/s)

These data will be used to create curves similar to the claimed performance, included in Appendix B.

During the test the average water level must be within 0.5 and 1.5mm/s, since this is common values in runoff systems.

## 3.4 Additional parameters

Besides the performance parameters obtained by testing, a compilation of parameters describing the ease of understanding the user manual, required resources, and occupational health and environmental issues of the Mosbaek CEV is included in the verification.

# 4 Existing data

No existing CEV test data has been provided by Mosbaek for evaluation under this verification.

## 5 Requirements on test design and data quality

Based on the identification of application and performance parameters the requirements for the test design have been set. A detailed test plan will be prepared separately based on the specifications of the test requirements presented below. The test plan shall be prepared in accordance with the requirement and test plan template in the EU General Verification Protocol [1] and the DANETV Centre Quality Manual –Water technology [3].

## 5.1 Test design

At an early stage it has been considered whether the test should be performed in an existing well or in a designed well. It has been decided to construct designed wells where the testing can take place.

The test design is divided into five tasks. These are listed with objectives and overall work plan in Table 5-1 and detailed in section 5.1.1-5.1.5.

| Task<br>Objective | 1<br>Design of test<br>facility                                          | 2<br>Installation of<br>facility        | 3<br>Pre-testing                                  | 4<br>Verification<br>testing                       | 5<br>Documentation |
|-------------------|--------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------|----------------------------------------------------|--------------------|
| Work plan         | Determination of                                                         | Installation of                         | Test of facility                                  | Test of CEV                                        | Data management    |
|                   | Identification of<br>needed equip-<br>ment and meas-<br>urements devises | Installation of<br>measuring<br>devises | Test and calibra-<br>tion of measuring<br>devises | On-line flow and<br>water pressure<br>measurements | Data quality       |

Table 5-1 Test design for this verification

### 5.1.1 Task 1 - Design of test facility

*Objective:* The objective of this task is to determine where the test facility shall be located and to describe the test facility and the needed measuring devises.

*Work plan:* The design of the test facility comprises the following work items:

- Determination of the location of test wells
- Description of the equipment to be used during construction of the wells
- Description of the needed measuring devises
- Pattern of operation of the water pumping system, CEV and water outlet
- Pattern of operation of the measuring devises.

### 5.1.2 Task 2 - Installation of facility

*Objective:* The objective of this task is to have the wells and the measuring devices installed at the location.

*Work plan:* The installation of the test facility comprises the following work items:

- Installation of test wells
- Ensuring that water inlet and outlet is connected
- Installation of measuring devises and data-logging.

### 5.1.3 Task 3 – Pre-testing

*Objective:* The objective of this task is to have the regulator well and the measuring devises tested and ready for operation under the actual test.

*Work plan:* The pre-testing of the test facility comprises the following work items:

- Testing the regulator well filled with water for detection of possible leakages
- Testing operation of inlet and outlet water
- Control of and if required calibration of measuring devises
- Control that all four CEV-models can be installed correctly in the well
- Implementation of a test run of the planned verification test
- Final adjustments of the test facility.

### 5.1.4 Task 4 – Verification testing

*Objective:* The objective of this task is to test four selected CEVs. Based on on-line measurements of flow and water pressure (height) the performance is evaluated and verified.

*Work plan:* The verification testing of the CEVs comprises the following work items:

- Verification testing, including
  - 3 to 4 runs for each CEV-model, these shall be performed at different average rise of water level in the regulator well. The average rise in head in the test well shall be between 0.5 to 1.5 mm/s (which are common values in run off systems). To ensure a stable rise in head an inlet tank is installed parallel to the regulator well (see Figure 3-2).
  - To show variation one of the runs for one of the CEV-models must be repeated 3 times. If the variation of the triplicates is more than 10 % (e.g. in the bump), triplicate runs have to be made for the remaining CEV-models too.
  - A reference test with no CEV must be performed, see further information in Section 5.2.
  - $\circ$  The inflow is started in an empty regulator well. The inflow and outflow must continue until the design head,  $H_{design}$  for the actual CEV is reached, thereafter the well shall run empty.
- Online measurement and evaluation of the flows and water pressure during the test runs. The monitoring of outflow (e.g. as water pressure in collection tank), inflow and water pressure (height) in test manhole shall as far as possible continue through the whole test run.

### 5.1.5 Task 5 – Documentation of verification

*Objective:* The objective is to ensure proper documentation and data management during the verification testing.

*Work plan:* The documentation of the verification testing comprises the following work items:

- Use of amendment and deviation forms in case of changes to the developed test plan. Templates to be found in [3].
- Creation and use of a field logbook, where also deviations from the stated operating conditions (e.g. flow, pressure) must be documented.
- Appropriate storage of data from on-line measurements of flow and water pressure.

### 5.2 Reference analysis and measurements

A test run should be performed as a reference with only an orifice and no CEV at the outlet. This shall be done for an orifice diameters corresponding to the smallest tested CEV, see Table 3-2. To show variations the run with this orifice test must be repeated 3 times.

The calibration of measuring devises must be documented either by certificates or details of calibration and listed in the field logbook, where the calibration is performed prior to testing.

### 5.3 Data management

Data storage, transfer and control must be in accordance with the requirements of the DANETV Centre Quality Manual [3] and the quality manual of the test body, enabling full control and retrieval of documents and records. The requirements to filing and archiving of the quality manual of the test body must be followed.

On-line measurements are expected to be recorded and stored by means of a data-logger and retrieved by the test personnel. The data can then be transferred for instance to Excel files for evaluation. The actual data handling must be specified further in the test plan.

The data from the tests will be stored under a name, which are self-explanatory.

### 5.4 Quality assurance

The quality assurance of the tests must include test system control, test system audit, performance evaluation audit and control of the data quality and integrity. Details are specified below and for several of them detailed definitions can also be found in Appendix A:

- Test system audit: Physical audit by an auditor from the verification body during the actual testing of the technology.
- Performance evaluation audit: Calibration or control of calibration on monitoring equipment. For some instruments the calibration is done by the manufacturer and a valid certificate is required. Other instruments need regular calibration that has to be performed as required and documented.
- Test system control: Control of the test system used in the actual test for instance by testing whether the equipment is measuring as expected. This could be implemented as:
  - Control measurements before and after testing, the test body must consider if a static control measurement is sufficient or if also a dynamic measurement is required.
  - An inspection for possible leakages in the test set-up e.g. between the two parts of the CEV.
  - Control of relation between inflow and pressure height by performing measurement with closed CEV.
  - o Control of data logging by using two parallel data loggers
  - Define boundary conditions on outlet side, to ensure it does not affect determination of outflow.
- Data quality and integrity: The test body is responsible for high quality test data and must ensure proper and traceable handling of the test results.

The test plan and the test report must be subject to a review by an internal expert. Furthermore, test plan and test report must be subject to a review by the verification body, which will be performed by an appointed verification expert (MTA). The test plan needs an approval by the verification body, which will be given by the verification responsible (PF).

The test plan must be approved by Mosbaek before the test is initiated.

The test body is obliged to have an internal test system audit performed. In addition, a test system audit will be performed by the verification responsible (PF) during the verification testing.

## 5.5 Test report requirements

The test data and records from the verification testing must be reported in a test report following the principles and template in the General Verification Protocol [1].

## 6 Evaluation

### 6.1 Calculation of performance parameters

The results from the verification testing should be shown graphically and specific performance parameters must be calculated.

For each of the four CEV-models as well as for the run without CEV the test report should include graphs, including all test runs on:

- A. Relation between inflow (l/s) and time (s)
- B. Relation between time (s) and head in regulator well (mH<sub>2</sub>O)
- C. Relation between calculated outflow (l/s) and time (s)
- D. Relation between outflow (l/s) and head in regulator well  $(mH_2O)$

The outflow cannot be measured directly due to air and circulation in the outlet. However, measurements of the head in the outlet tank and of the overflow from the outlet tank will be measured/registered. The  $Q_{outflow}$  will be calculated in two ways:

1) by using the following equation:

$$Q_{outflow} = Q_{inflow} - \frac{\Delta H well \times A well \times 1000}{\Delta t}$$

 $\begin{array}{l} Q_{outflow}: \mbox{Flow out of CEV (l/s)} \\ Q_{inflow}: \mbox{Flow into inlet tank (l/s)} \\ A_{well}: \mbox{Surface area in inlet tank+regulator well+riser (m^2)} \\ H_{well}: \mbox{Pressure head above outlet invert level in the regulator well (mH_2O)} \\ \Delta t: \mbox{Time for changing $H_{well}$ with $\Delta H_{well}$ (s)} \end{array}$ 

2) by using the following equation:

$$Q_{outflow} = Q_{overflow} + \frac{\Delta Hout \times Aout \times 1000}{\Delta t}$$

 $Q_{outflow}$ : Flow out of CEV (l/s)  $Q_{overflow}$ : Overflow from the outlet tank (l/s)  $A_{out}$ : Surface area in the outlet tank+riser (m<sup>2</sup>)  $H_{out}$ : Pressure head in the outlet tank (mH<sub>2</sub>O)  $\Delta$ t: Time for changing  $H_{out}$  with  $\Delta H_{out}$  (s)

The equitation 2) will be used as in the performance evaluation, while 1) will only be used as indication and control of the result in 2).

### 6.1.1 Flow at H<sub>bump</sub> and H<sub>design</sub>

The performance parameters regarding the claim:  $Q_{design}$  is met at  $H_{bump}$  and  $H_{design}$  must be evaluated in the verification report based on the results shown in the prepared graph D. For each test run, the flow at the bump ( $Q_{bump}$ ') and at  $H_{design}$  ( $Q_{design}$ ') is derived<sup>2</sup>.

<sup>&</sup>lt;sup>2</sup> Apostrophes indicated that the numbers are based on measurements.



Figure 6-1 Points to be identified during evaluation of results.

Based on the values, average and precision for  $Q_{bump}$ ' and  $Q_{design}$ ' for each of the four CEV-models will be calculated. These calculations are performed according to the following equations:

Average:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

X: average of values n: number of data points X<sub>i</sub>: individual value

Precision:

$$SD = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$
$$RSD = \frac{SD}{\bar{X}}$$

SD: standard deviation RSD: relative standard deviation n: number of data points  $X_i$ : individual value  $\overline{X}$ : average of values

### 6.1.2 Flow reduction at H<sub>design</sub>

The reduction in flow is calculated for  $H_{design}$  by comparing these values with the test run for CEV 1.41/s @ 1.00m – 100% with test runs with only an orifice plate with diameter corresponding to the CEV. The reduction flow caused by the CEVs will be calculated as shown in Figure 3-5. Precision as relative standard deviation will also be calculated.

## 6.2 Evaluation of test quality

The information in the test report on the test system control, test system audit, performance evaluation audit and control of the data quality and integrity should be evaluated against the requirements set in this protocol and the objectives set in the test plan.

Spread sheets used for calculations must be subject to control on a sample basis (spot validation).

The internal audit report and the external audit report prepared by ETA Danmark will be evaluated and major findings complied and reported.

### 6.3 Operational parameter summary

Test data on operational parameters must be summarised in the test report.

## 6.4 Additional parameter summary

### 6.4.1 User manual

The verification criterion for the user manual is that the manual describes the use of the equipment adequately and is understandable for the typical test coordinator and test technician. This criterion is assessed through evaluation of a number of specific points of importance, see Table 6-1 for the parameters to be included.

A description is complete if all essential steps are described, if they are illustrated by a figure or a photo, where relevant, and if the descriptions are understandable without reference to other guidance.

| Parameter              | Complete    | Summary     | No description | Not relevant |
|------------------------|-------------|-------------|----------------|--------------|
|                        | description | description |                |              |
|                        |             |             |                |              |
| Product                |             |             |                |              |
| Principle of operation |             |             |                |              |
| Intended use           |             |             |                |              |
| Performance expected   |             |             |                |              |
| Limitations            |             |             |                |              |
|                        |             |             |                |              |
| Preparations           |             |             |                |              |
| Unpacking              |             |             |                |              |
| Transport              |             |             |                |              |
| Assembly               |             |             |                |              |
| Installation           |             |             |                |              |
| Function test          |             |             |                |              |
|                        |             |             |                |              |
| Operation              |             |             |                |              |
| Steps of operation     |             |             |                |              |
| Points of caution      |             |             |                |              |
| Accessories            |             |             |                |              |
| Maintenance            |             |             |                |              |
| Trouble shooting       |             |             |                |              |
|                        |             |             |                |              |
| Safety                 |             |             |                |              |
| Chemicals              |             |             |                |              |
| Power                  |             |             |                |              |

Table 6-1Criteria for evaluation of user manual.

## 6.4.2 Required resources

The capital investment and the resources for operation and maintenance could be seen as the sustainability of the product and will be itemized based upon a determined design [4], see Table 6-2 for the items that will be included.

#### Table 6-2 List of capital cost items and operation and maintenance cost items per product unit.

| Item type                             | Item | Number | None |
|---------------------------------------|------|--------|------|
|                                       |      |        |      |
| Capital                               |      |        |      |
| Site preparation                      |      |        |      |
| Buildings and land                    |      |        |      |
| Equipment                             |      |        |      |
| Utility connections                   |      |        |      |
| Installation                          |      |        |      |
| Start up/training                     |      |        |      |
| Permits                               |      |        |      |
|                                       |      |        |      |
| Operation and maintenance             |      |        |      |
| Materials, including chemicals        |      |        |      |
| Utilities, including water and energy |      |        |      |
| Labor                                 |      |        |      |
| Waste management                      |      |        |      |
| Permit compliance                     |      |        |      |

The design basis will be described and the cost items relevant for the Mosbaek CEVs will be listed. Note that the actual cost for each item is not compiled and reported.

Evaluation will also be done on the following subjects:

- Resources used during production of the equipment in the technology
- Longevity of the equipment
- Robustness/vulnerability to changing conditions of use or maintenance
- Reusability, recyclability (fully or in part)
- End of life decommissioning and disposal

Information on these subjects will be gained from Mosbaek.

### 6.4.3 Occupational health and environmental impact

The risks for occupational health and for the environment associated with the use of the products will be identified. A list of chemicals classified as toxic (T) or very toxic (Tx) for human health and/or environmentally hazardous (N) (in accordance with the directive on classification of dangerous substances [5]) will be compiled. The information will be given as amount used per product unit (sample), see Table 6-3 for format.

 Table 6-3
 Compilation of classified chemicals used during product operation.

| Compound | CAS number | Classification | Amount used per<br>product unit |
|----------|------------|----------------|---------------------------------|
|          |            |                |                                 |
|          |            |                |                                 |

Additional risks from installing, operating and maintaining the product will be evaluated, compiled and reported, if relevant. In particular, risks for human health associated with power supply and danger of infections will be considered.

## 7 Verification schedule

The verification was initiated in the late spring 2012. The testing facility was constructed during winter 2012-2013 and testing is planned to take place in the summer/fall 2013. A detailed schedule is given in Table 7-1.

#### Table 7-1 Verification schedule.

| Task                                               | Verification Body      | Test Body           |
|----------------------------------------------------|------------------------|---------------------|
| Specific verification protocol                     | October 2012           |                     |
| External review of specific verification protocol  | October/November 2012  |                     |
| Testing incl. test planning, testing and reporting |                        | August-October 2013 |
| Test system audit                                  | September 2013         |                     |
| Assessment and verification reporting              | November-December 2013 |                     |
| External review of verification report             | January 2014           |                     |
| Issuing of Statement of Verification               | January 2014           |                     |

## 8 Quality assurance

The personnel and experts responsible for quality assurance as well as the different quality assurance tasks can be seen in Table 8-1. All relevant reviews will be prepared using the DANETV review report template [3]. An audit of the test will be performed.

Table 8-1 QA plan for the verification

|                                | Internal expert | Verification body |         | Proposer           | External experts |
|--------------------------------|-----------------|-------------------|---------|--------------------|------------------|
| Initials                       | MJK             | MTA               | PF      | Mosbaek            | TL               |
| Tasks                          |                 |                   |         |                    |                  |
| Specific verification protocol | Review          |                   |         | Review and approve | Review           |
| Test plan                      |                 | Review            | Approve | Review and approve |                  |
| Test system at test site       |                 |                   | Audit   |                    |                  |
| Test report                    |                 | Review            |         | Review             |                  |
| Verification report            | Review          |                   |         | Review             | Review           |
| Statement of Verification      |                 |                   |         | Acceptance         | Review           |

Internal review is conducted by Morten Just Kjølby (MJK) and a test system audit is conducted following general audit procedures by certified auditor Peter Fritzel (PF).

Only the verification protocol and verification report require external review according to EU ETV pilot programme GVP [1]. External review will be performed by Torben Larsen (TL).

The verification body will review and approve the test plan and review the test report. The review will be performed by Mette Tjener Andersson (MTA), while the approval will be given by Peter Fritzel (PF).

## 9 References

- 1. EU Environmental Technology Verification pilot programme. General Verification Protocol. 15-12-2011.
- 2. ETA Danmark. ETV Verifikation. I30.11, Environmental Technology Verification. 20-11-2013.
- 3. DANETV Centre Quality Manual Water technology. Version 2, September 2011.
- 4. Gavaskar, A. and Cumming, L.: Cost Evaluation Strategies for Technologies Tested under the Environmental Technology Verification Program. 2001. Battelle.
- 5. European Commission: Commission Directive on classification, packaging and labelling of dangerous substances. 2001/59/EC. 2001.
- 6. Umwelt- und Fluid-Technik Dr. H. Brombach GmbH. Produktinformation: Vertikales Wirbelventil UFT-FluidVertic. VSU/VLS 0122. Located on www.uft-brombach.de October 2012.
- 7. WRcAPPROVED. Cerfificate. JFC Manufacturing Co. Ltd Hydro-Valve Vortex Floe Control Device (up to 35 l/s). Located on www.wrcapproved.com October 2012.
- 8. Hydro International: Would the real Hydro-Brake<sup>®</sup> please step forward. Not all vortex flow control systems are the same. Located on www.hydro-int.com October 2012.
- 9. WRcAPPROVED. PT/298/0410 AS (April 2010). Asseement Schedule for the Hydro-Valve vortex flow control device produced by JFC Manufacturing Co. Ltd. Located on www.wrcapproved.com October 2012.
- 10. BBA Technical approval of constructioons. BBA Services Sheet. No 08/07. Development Analysis. Located on www.bbacerts.co.uk October 2012.
- 11. JFC. Hydro-valve slider. Technical specification, Document No: D-HVS-TS/ Revision:000/ Release Date:01/03/2012. Located on www.jfc.ie October 2012.
- 12. Hydro International. Hydro-Brake Optimum, http://www.hydroint.com/intl/products/hydro-brake-optimum. Located October 2012.
- 13. AVT. Product description. http://www.avt-flowcontrols.com/des.htm#descriptions. Located October 2012.

APPENDICES

Specific Verification Protocol Mosbaek.docx



Terms and definitions
Specific Verification Protocol Mosbaek.docx

The terms and definitions used by the verification body are derived from the EU ETV General Verification Protocol, ISO 9001 and ISO 17020.

| Term                                   | DANETV                                                                                                                                                                                                                 | Comments on the DANETV approach                                                                                                                                                       |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Accreditation                          | Meaning as assigned to it by Regulation (EC) No 765/2008                                                                                                                                                               | EC No 765/2008 is on setting out the require-<br>ments for accreditation and market surveil-<br>lance relating to the marketing of products                                           |  |
| Additional parameter                   | Other effects that will be described but are considered secondary                                                                                                                                                      | None                                                                                                                                                                                  |  |
| Amendment                              | Is a change to a specific verification protocol or<br>a test plan done before the verification or test<br>step is performed                                                                                            | None                                                                                                                                                                                  |  |
| Application                            | The use of a product specified with respect to matrix, purpose (target and effect) and limita-<br>tions                                                                                                                | The application must be defined with a preci-<br>sion that allows the user of a product verifica-<br>tion to judge whether his needs are comparable<br>to the verification conditions |  |
| DANETV                                 | Danish centre for verification of environmental technologies                                                                                                                                                           | None                                                                                                                                                                                  |  |
| Deviation                              | Is a change to a specific verification protocol or<br>a test plan done during the verification or test<br>step performance                                                                                             | None                                                                                                                                                                                  |  |
| Evaluation                             | Evaluation of test data for a technology product for performance and data quality                                                                                                                                      | None                                                                                                                                                                                  |  |
| Experts                                | Independent persons qualified on a technology in verification                                                                                                                                                          | These experts may be technical experts, QA<br>experts for other ETV systems or regulatory<br>experts                                                                                  |  |
| General verification protocol<br>(GVP) | Description of the principles and general pro-<br>cedure to be followed by the EU ETV pilot pro-<br>gramme when verifying an individual envi-<br>ronmental technology.                                                 | None                                                                                                                                                                                  |  |
| Matrix                                 | The type of material that the technology is intended for                                                                                                                                                               | Matrices could be soil, drinking water, ground<br>water, degreasing bath, exhaust gas condensate<br>etc.                                                                              |  |
| Operational parameter                  | Measurable parameters that define the applica-<br>tion and the verification and test conditions.<br>Operational parameters could be production<br>capacity, concentrations of non-target com-<br>pounds in matrix etc. | None                                                                                                                                                                                  |  |
| (Initial) performance claim            | Proposer claimed technical specifications of<br>product. Shall state the conditions of use under<br>which the claim is applicable and mention any<br>relevant assumption made                                          | The proposer claims shall be included in the ETV proposal. The initial claims can be developed as part of the quick scan.                                                             |  |

| Term                                                     | DANETV                                                                                                                                                                                                                                                                                                                        | Comments on the DANETV approach                                                                                                                                                                                                                                    |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Performance parameters (re-<br>vised performance claims) | A set of quantified technical specifications rep-<br>resentative of the technical performance and<br>potential environmental impacts of a technolo-<br>gy in a specified application and under speci-<br>fied conditions of testing or use (operational<br>parameters).                                                       | The performance parameters must be estab-<br>lished considering the application(s) of the<br>product, the requirements of society (legisla-<br>tive regulations), customers (needs) and pro-<br>poser initial performance claims                                   |
| Procedure                                                | Detailed description of the use of a standard or<br>a method within one body                                                                                                                                                                                                                                                  | The procedure specifies implementing a stand-<br>ard or a method in terms of e.g.: equipment<br>used                                                                                                                                                               |
| Proposer                                                 | Any legal entity or natural, which can be the<br>technology manufacturer or an authorised<br>representative of the technology manufacturer.<br>If the technology manufactures concerned<br>agree, the proposer can be another stakeholder<br>undertaking a specific verification programme<br>involving several technologies. | Can be vendor or producer                                                                                                                                                                                                                                          |
| Purpose                                                  | The measurable property that is affected by the product and how it is affected.                                                                                                                                                                                                                                               | The purpose could be reduction of nitrate con-<br>centration, separation of volatile organic com-<br>pounds, reduction of energy use (MW/kg) etc.                                                                                                                  |
| (Specific) verification protocol                         | Protocol describing the specific verification of a technology as developed applying the principles and procedures of the EU GVP and the quality manual of the verification body.                                                                                                                                              | None                                                                                                                                                                                                                                                               |
| Standard                                                 | Generic document established by consensus<br>and approved by a recognised standardization<br>body that provides rules, guidelines or charac-<br>teristics for tests or analysis                                                                                                                                               | None                                                                                                                                                                                                                                                               |
| Test/testing                                             | Determination of the performance of a product<br>for measurement/parameters defined for the<br>application                                                                                                                                                                                                                    | None                                                                                                                                                                                                                                                               |
| Test performance audit                                   | Quantitative evaluation of a measurement sys-<br>tem as used in a specific test.                                                                                                                                                                                                                                              | E.g. evaluation of laboratory control data for<br>relevant period (precision under repeatability<br>conditions, trueness), evaluation of data from<br>laboratory participation in proficiency test and<br>control of calibration of online measurement<br>devises. |
| Test system audit                                        | Qualitative on-site evaluation of test, sampling<br>and/or measurement systems associated with<br>a specific test.                                                                                                                                                                                                            | E.g. evaluation of the testing done against the<br>requirements of the specific verification proto-<br>col, the test plan and the quality manual of the<br>test body.                                                                                              |
| Test system control                                      | Control of the test system as used in a specific test.                                                                                                                                                                                                                                                                        | E.g. test of stock solutions, evaluation of stabil-<br>ity of operational and/or on-line analytical<br>equipment, test of blanks and reference tech-                                                                                                               |

| Term         | DANETV                                                                                                                                                                                                                                                                             | Comments on the DANETV approach |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|              |                                                                                                                                                                                                                                                                                    | nology tests.                   |
| Verification | Provision of objective evidence that the tech-<br>nical design of a given environmental technolo-<br>gy ensures the fulfilment of a given perfor-<br>mance claim in a specified application, taking<br>any measurement uncertainty and relevant<br>assumptions into consideration. | None                            |

# APPENDIX B

# Claimed performance of Mosbaek CEVs

Specific Verification Protocol Mosbaek.docx



**Ref: 109.1.1** Date: 29-10-2012 **Design**: Q=1,4l/s H=1m







**Ref: 109.4.1** Date: 29-10-2012 **Design**: Q=4,9l/s H=1,5m



# CEV 4.9I/s@1.50m - 100%



**Ref: 109.6.2** Date: 29-10-2012 **Design**: Q=10,5l/s H=2m

CEV 10.5l/s@2.00m - 78%





**Ref: 109.3.1** Date: 29-10-2012 **Design**: Q=10,5I/s H=2m

# CEV 10.5l/s@2.00m - 100%



# APPENDIX C

Test Plan





# Mosbaek CEV Flow Regulator

**Test Plan** 





Test Plan January 2015









| Approved by                         |
|-------------------------------------|
| Jesper Fuchs, Head of Projects, POT |
|                                     |
|                                     |





# Mosbaek CEV Flow Regulator

**Test Plan** 

Prepared for Represented by Mosbaek Mr Torben Krejberg, Technical Director



Sketch of CEV flow regulator in well

| Project manager     | Mette Tjener Andersson                                      |  |  |
|---------------------|-------------------------------------------------------------|--|--|
| Author              | Mogens Hebsgaard                                            |  |  |
| Quality supervisors | Jesper Fuchs – Mette Tjener Andersson                       |  |  |
| Approver            | Jesper Fuchs, Head of Projects, Ports & Offshore Technology |  |  |
|                     |                                                             |  |  |
| Project number      | 11811720                                                    |  |  |
| Approval date       | 09 January 2015                                             |  |  |
| Revision            | Final 2.0                                                   |  |  |
| Classification      | Restricted                                                  |  |  |









# CONTENTS

| <b>1</b><br>1.1<br>1.2<br>1.3<br>1.4 | Introduction       1         Short description of the CEV regulator       1         Verification protocol reference       1         Name and contact of proposer       1         Name of test body/test responsible       1 |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                    | Purpose and Functioning of the Flow Regulator                                                                                                                                                                               |
| 3                                    | Test Design                                                                                                                                                                                                                 |
| 3.1                                  | Test site5                                                                                                                                                                                                                  |
| 3.1.1                                | Туре5                                                                                                                                                                                                                       |
| 3.1.2                                | Addresses                                                                                                                                                                                                                   |
| 3.1.3                                | Descriptions                                                                                                                                                                                                                |
| 3.2                                  | Test design and model set-up5                                                                                                                                                                                               |
| 3.2.1                                | Task 1 – Design of test facility                                                                                                                                                                                            |
| 3.2.2                                | Task 2 – Installation of facility                                                                                                                                                                                           |
| 3.2.3                                | Task 3 – Pre-testing                                                                                                                                                                                                        |
| 3.2.4                                | Task 4 – Verification testing                                                                                                                                                                                               |
| 3.2.5                                | Task 5 – Documentation of verification                                                                                                                                                                                      |
| 3.2.6                                | Appropriate storage of data from on-line measurements of flow and water pressure – Test staff                                                                                                                               |
| 327                                  | Test schedule 14                                                                                                                                                                                                            |
| 3.2.8                                | Health, safety and waste                                                                                                                                                                                                    |
|                                      |                                                                                                                                                                                                                             |
| 4                                    | Measurements and Data Analyses15                                                                                                                                                                                            |
| 4.1                                  | Measurement parameters and methods                                                                                                                                                                                          |
| 4.2                                  | Analytical and measurement performance requirements                                                                                                                                                                         |
| 4.3                                  | Data management16                                                                                                                                                                                                           |
| 4.4                                  | Data storage, transfer and control16                                                                                                                                                                                        |
| 5                                    | Quality Assurance                                                                                                                                                                                                           |
| 51                                   | Test plan review 17                                                                                                                                                                                                         |
| 5.2                                  | Performance control – analysis and measurements 17                                                                                                                                                                          |
| 5.3                                  | Test system control                                                                                                                                                                                                         |
| 5.4                                  | Data integrity check procedures                                                                                                                                                                                             |
| 5.5                                  | Test system audits                                                                                                                                                                                                          |
| 5.6                                  | Test report review                                                                                                                                                                                                          |
| -                                    |                                                                                                                                                                                                                             |
| 6                                    | Test Report19                                                                                                                                                                                                               |
| 6.1                                  | Amendment report                                                                                                                                                                                                            |
| 6.2                                  | Deviations report                                                                                                                                                                                                           |
| 7                                    | References                                                                                                                                                                                                                  |





# FIGURES

| Figure 2.1 | Sketch of CEV flow regulator installed in well. Sketch provided by Mosbaek               | 3 |
|------------|------------------------------------------------------------------------------------------|---|
| Figure 2.2 | Graphic showing the general vortex brake effect on water outflow, with CEVs operating at |   |
|            | 78% and 100% efficiency and water inflow to well larger than outflow though CEV (well is |   |
|            | filling up). Graph provided by Mosbaek                                                   | 4 |
| Figure 3.1 | Model set-up                                                                             | 7 |

# TABLES

| Table 3.1 | Proposed test programme | 1 | 2 |
|-----------|-------------------------|---|---|
|-----------|-------------------------|---|---|

# APPENDICES

### APPENDIX A

Terms and Definitions

#### **APPENDIX B**

Instrument Specifications: Flowmeters and Pressure Transducers Data Logging Equipment

#### **APPENDIX C**

Specifications of 300mm and 800mm WAVIN Pipes

#### APPENDIX D

Check Lists, Pre-tests and Verification Tests





# 1 Introduction

Environmental technology verification (ETV) is an independent (third party) assessment of the performance of a technology or a product for a specified application, under defined conditions and quality assurance.

The objective of this verification and the testing is to evaluate the performance of a vertical centrifugal flow regulator, CEV (**CE**ntrifugal **V**ertical) for storm water pipes.

# 1.1 Short description of the CEV regulator

The technology to be verified is the vertical centrifugal flow regulator, CEV (**CE**ntrifugal **V**ertical) from Mosbaek. It is a wet-mounted vortex flow regulator for storm water drainage system with design flows between 0.2-80l/s.

The CEV regulates the water due to the vortex created when a certain water flow is going through the unit. The vortex slows down the water flow through the CEV. As a consequence, water is detained and stored upstream of the CEV, for example in a well, and the water flow rate is then kept almost constant.

# 1.2 Verification protocol reference

This test plan is prepared in response to the test design established in the Mosbaek CEV flow regulator verification protocol /1/.

# 1.3 Name and contact of proposer

Mosbaek A/S Værkstedsvej 20 4600 Køge Denmark

Contact: Torben Krejberg, e-mail: tk@mosbaek.dk, phone +45 5663 8580

Mosbaek website: www.mosbaek.dk

### 1.4 Name of test body/test responsible

DHI DANETV Test Centre Agern Alle 5 DK-2970 Hørsholm Denmark

Test responsible:

Mogens Hebsgaard, email: mhe@dhigroup.com, phone +45 4516 9414









# 2 Purpose and Functioning of the Flow Regulator

This section gives a short description of CEV flow regulators and the purpose of the regulators. For further information, see /1/.

Extreme rainfall events are often characterised by being short and local, and for short periods causing full-flowing pipes and surcharges to the surface or to the recipients. The frequency of over-loads on the system's hydraulic capacity is expected to increase in future due to climate changes. In such situations, it may be advantageous to be able to delay the excess water upstream for a certain period of time until the pipe system downstream will be able to receive and deal with the water.

The delay of water may take place by means of a flow regulator, which will be efficient in most precipitation situations. The delay of water means that installation of larger pipes or basins downstream may be avoided.

The flow regulator technology is based on quickly reaching the maximum discharge flow of the regulator and then staying at or below this value, when the pressure increases. The maximum discharge flow is chosen such that the amount of water passing through the regulator does not cause problems to the downstream pipe network.

Generally speaking, the purpose of a flow regulator is to protect the downstream parts of the drainage system against overloading and flooding. One of the specific qualities of the flow regulator is that it allows liquid to pass the drainage system at a pre-determined maximum discharge rate (amount per time unit), regardless of the variation in feed flow and in the water level (up to design water level) immediately upstream the regulator.



A schematic view of the CEV in operation in a well is shown in Figure 2.1.

Figure 2.1 Sketch of CEV flow regulator installed in well. Sketch provided by Mosbaek

To avoid the risk of blocking and to minimise the need for service and maintenance, the CEV is without moving parts. Furthermore, its passageway is large in order to minimise its flow resistance during normal, daily runoff situations.





During low flow conditions, water entering through the inlet of the CEV passes through the well with negligible pressure drop. During high flow conditions, a vortex flow pattern develops within the CEV creating an air-filled core. This phenomenon restricts and throttles flow through the device, creating back pressure immediately upstream of the device.

The CEV can be built to fulfil different design criteria. The specific design criteria are defined by the client and Mosbaek in cooperation according to the design of the existing or planned piping network.

The creation of the vortex in the CEV causes a speed reduction of the outflow, Q, allowing the well to be used for water storage during a storm event. Figure 2.2 shows the flow through a CEV. In the 100% case, the maximum outlet ( $Q_{design}$ ) is met twice, first where the vortex is formed (the bump on the graph) and then at the specified  $H_{design}$ , where  $H_{design}$  is calculated from the invert of the discharge pipe to the maximum water level in the well. A 78% case (a smaller CEV in a well with same height) with the same  $H_{design}$  is also shown; here the bump occurs at a flow of 78% of  $Q_{design}$ .





The optimal solution (100%), where  $Q_{bump}$  equals  $Q_{design}$ , give less restriction at low heads allowing a better throughput during normal operating situations and thereby less risk of blocking downstream.

The regulators are designed to function optimal at a rate of increase of the water levels approximately between 0.5 and 1.5mm/s.





# 3 Test Design

The test design in the test plan is based on the requirement in the Specific Verification Protocol, /1/.

### 3.1 Test site

The verification of the CEV flow regulator will be carried out at a test site established at Mosbaek A/S, Køge, Denmark.

#### 3.1.1 Type

The tests comprise field tests with data collection.

#### 3.1.2 Addresses

The tests will be performed at

Mosbaek A/S Værkstedsvej 20 4600 Køge Denmark

#### 3.1.3 Descriptions

Descriptions of the test design and model set-up are included in Section 3.2.

### 3.2 Test design and model set-up

The test design for the CEV flow regulators is described in the following sub-sections.

In accordance with the verification protocol /1/, the test design has been divided into five tasks:

- 1. Design of test facility
- 2. Installation of facility
- 3. Test of facility
- 4. Verification testing
- 5. Documentation

#### 3.2.1 Task 1 – Design of test facility

Objective: The objective of this task is to determine where the test facility shall be located and to describe the test facility and the required measuring devices.

Work plan: The design of the test facility comprises the following work items:

- Determination of the location of test set-up
- Description of the equipment to be used during construction of the test set-up
- Description of the required measuring devices
- Method of operation of the water pumping system, CEV and water outlet
- Method of operation of the measuring devices.





#### Location and set-up of test facility

The test facility is set up at Mosbaek's workshop facilities in Køge.

The set-up of the test facility is shown in the drawings in Figure 3.1. The set-up consists of a well (Ø800mm with inner diameter 785mm, see also Appendix C) with top level 4.01m above ground level. The test well is placed on a 1.21m high base; the CEV regulator is mounted in this well, which therefore is denoted the regulator well. The regulator well is in direct connection with a large diameter tank, called the inlet tank (Ø1991mm), through an Ø160mm pipe, positioned just opposite the CEV outlet. The water levels in the regulator well and the inlet tank are accordingly identical. The CEV invert level is positioned 1.58m above the ground level. This set-up is established in order to secure that the increase of the water level in the regulator well can be controlled and limited to 0.5-1.5mm/s still with a reasonable high flow rate to the well. The inlet of water takes place directly to the inlet tank and leads to the regulator well (Ø800mm with inner diameter 785mm). The outlet connection is through the CEV in the regulator well to the outlet tank. A pressure transducer is mounted in the base of the regulator well. On the base of the regulator well, a Plexiglas riser is mounted in order to allow for check of the calibration of the pressure transducer and in order to be able to follow the water level in the well during testing.

The flow to the inlet tank is fed at the top of the tank through an ø160mm pipe (which is placed internally in the tank) by means of a pump, which is pumping water from a feeding tank. The flow from the feeding tank to the inlet tank is measured by means of the flowmeter. The water level in the feeding tank is kept constant by pumping water from a central reservoir to the feeding tank; an overflow weir ensures that the water level in this tank is kept almost constant. In this way, it is possible to keep an almost constant head at the pump and thus an almost constant flow.

From the regulator well, the water flows through the regulator to the outlet tank through an ø160mm pipe. The outlet tank (ø300mm with inner diameter 294mm, see also Appendix C) is equipped with a pressure cell, which monitors the water level in this tank. The outlet flow from the outlet tank is measured by means of a flowmeter. The outlet flow is thus measured by a combination of pressure change during time in the outlet well and discharge from the outlet well.

A schematic impression of the flow through the test set-up is shown in the following Figure 3.1.







Figure 3.1 Model set-up

#### Equipment summary

The following equipment will be used for the tests:

Intake connections

- Submersible pump with capacity 0-20l/s delivering water flow from the feeding tank (constant head tank)
- Connection from the pump to the inlet tank by means of an ø100mm tube and pipe. The pipe is placed inside the inlet tank (outside diameter of pipe is 160mm)
- A flowmeter (ø100mm) and adjustment valve on the intake pipe. Flowmeter measuring range: 0-69.4444l/s, for description see Appendix B

#### Regulator well

- Foundation of well, 1.21m high
- Upper part of the well, top level 4.01m above ground level, ø785mm with inlet pipe (DN ø160mm) and outlet pipe through the CEV regulator and an ø160mm pipe to the outlet tank, invert level 1.58m above ground level
- One pressure transducer, measuring the pressure close to the bottom of the regulator well (placed 0.874m below the invert of the outlet pipe); measuring range: 0-3.5mH<sub>2</sub>O; for description, see Appendix B
- The upper part of the well can be removed so that it is possible to shift CEV's and access
  pressure transducer if needed. The connection between the well and its base is sealed
  water tight. The CEV is mounted with the inlet opening pointing downwards. H=0m
  corresponds to the invert level of the CEV outlet pipe. The CEV is installed in the regulator
  well by a socket
- A riser, in the shape of an ø72mm (inner diameter) Plexiglas tube, is connected to the lower part of the regulator well. Manual readings of the water level in the riser are used to verify the calibration of the pressure transducer. Furthermore, it is used for observing the water level in the well during the tests. The riser is equipped with a scale showing the pressure in mH<sub>2</sub>O.





#### **Outlet connection**

- The water discharges from the CEV through the outlet tank to the discharge tank. The outlet from the outlet tank takes place through an ø100mm pipe with an ø100/ø50mm flowmeter mounted. For the smaller CEV regulator (1.4l/s), a flowmeter with measuring range 0-17.5l/s (ø50mm) will be used and for the larger, a flowmeter with measuring range 0-69.4444l/s will be used; for descriptions see Appendix B. The discharge pipe can be equipped with a plug for closure of the outlet
- One pressure transducer, measuring the pressure close to the bottom of the outlet tank; (0.223m below the outlet level) measuring range: 0-3.5mH<sub>2</sub>O; for description, see Appendix B
- A riser, in the shape of an ø72mm (inner diameter) Plexiglas tube, is connected to the lower part of the outlet tank. Manual readings of the water level in the riser are used to verify the calibration of the pressure transducer. The riser is equipped with a scale showing the pressure in mH<sub>2</sub>O.

The outlet flow from the outlet tank to the discharge tank takes place by means of an elevated outlet pipe. This is done to avoid air entrainment at the flowmeter and thus to ensure that the flowmeter measures correctly. As mentioned above, two different flowmeters and thus outlet pipes are used.

The test set-up is furthermore equipped with the following measuring devices:

- Datalogging equipment; for description, see Appendix B
- Rulers, calipers to be used for control dimensions of CEV's, etc.

#### Test operation description

This subtask is described in details later in Tasks 3 and 4.

#### Operation of measuring devices

This subtask is described in details later in Tasks 3 and 4.

#### 3.2.2 Task 2 – Installation of facility

*Objective:* The objective of this task is to have the wells and the measuring devices installed at the location.

Work plan: The installation of the test facility comprises the following work items:

- Installation of test set-up as described under Task 1
- Ensuring that water inlet and outlet is connected correctly according to the drawing and descriptions given in Task 1; check positions of intake and outlet pipes
- Installation of measuring devices and data-logging equipment
- Control dimensions of well, riser, outlet pipe, CEV

#### 3.2.3 Task 3 – Pre-testing

*Objective:* The objective of this task is to have the wells and the measuring devices tested and ready for operation and undertaking of the actual tests.

Work plan: The pre-testing of the test facility comprises the following work items:

- Testing the regulator well filled with water
- Check of calibration of pressure transducers
- Control that the CEV-models are installed correctly in the well
- Implementation of a trial run of the planned verification tests
- Final adjustments of the test facility as required





#### Testing the well filled with water

The purpose of this test is to check if any leakages are present and if all connections are water tight. For this purpose, the discharge line is closed by closing the outlet through the CEV, and the well is slowly filled with water. The water remains in the well for at least 10min and the pressures are recorded. The amount of water lost from the well per time unit is recorded. The amount of water lost from the well per time unit is recorded. The

$$Q_{lost} = 1000^{*} \Delta p_{rw}^{*} \pi^{*} (R_{rw}^{2} + R_{it}^{2} + r_{rw}^{2} - r_{ind}^{2}) / \Delta t$$

Q<sub>lost</sub> (l/s)

 $\Delta p_{rw}$  is the pressure difference (mH\_2O) in the regulator well during the time  $\Delta t$ 

 $R_{rw}$  is the radius of the well (0.3925m)

 $R_{it}$  is the radius of the inlet tank (=0.9955m). The dimension is to be verified during pre-testing  $r_{rw}$  is the radius of the Plexiglas riser (=0.036m)

 $r_{ind}$  is the radius of the feeding pipe (=0.080m)

$$\pi^*(R_{rw}^2 + R_{it}^2 + r_{rw}^2 - r_{ind}^2) = 3.58m^2$$

#### Check of pressure transducer calibration, regulator well

The check of the pressure transducer in the regulator well is carried out according to the following procedure:

- The CEV outlet is closed
- Water is filled in the well until the invert level of the outlet pipe; level above the pressure transducer is registered
- The water level is read in the riser and the output from the pressure transducer is logged
- Water is filled to about 1m, 2m and 3m above the pressure transducer
- For these water levels, the riser water level (mH<sub>2</sub>O) is read and the output from the pressure transducer is logged

The calibration can now be calculated as  $1mA = xxmH_2O$ , assuming a linear relationship between output and water level. The found relation is compared to the theoretical calibration  $(1mA=0.21857mH_2O)$ .

This calibration procedure is carried out at the same time as the testing of well filled with water.

#### Check of pressure transducer calibration, outlet tank

The check of the calibration of the pressure transducer in the outlet tank is performed in a similar way:

- The outlet from the outlet tank is closed
- Water is filled in the well until the pressure gauge is covered; level above the bottom is registered
- The water level is read in the riser and the output from the pressure transducer is logged
- Water is filled to about 0.5m, 1m and the highest possible level above the pressure transducer
- For these water levels, the riser water level is read and the output from the pressure transducer is logged

The calibration can now be calculated as  $1mA = xxmH_2O$ , assuming a linear relationship between output and water level. The found relation is compared to the theoretical calibration  $(1mA=0.21857mH_2O)$ .





#### Check of water surface area inlet side

The diameter of the inlet tank is varying somewhat over the height of the tank. The average inner diameter of the regulator well is given by the manufacturer (=785mm). The inner diameter of the inlet tank is determined from the tests carried out at the same time as testing of well filled with water and check of pressure cell calibration.

The radius of the inlet tank is determined from the expression:

 $Q_{inflow} * \Delta t = -1000 * \Delta p_{rw} * \pi * (R_{rw}^2 + R_{it}^2 + r_{rw}^2 - r_{ind}^2)$ 

Where all dimensions except R<sub>it</sub> are known

#### Flowmeter calibration inlet flow

The flowmeter is pre-calibrated from the factory, and further check of the flowmeter calibration will not be performed. The calibration factor is  $1mA = 4.340\ell/s$ .

#### Flowmeter calibration outlet flow

The flowmeters are pre-calibrated from the factory, and further check of the flowmeter calibrations will not be performed. The calibration factor for the 100mm flowmeter is  $1mA = 4.340\ell/s$ . The calibration factor for the 50mm flowmeter is  $1mA = 1.094\ell/s$ .

#### Control of CEV models

The CEV models to be used in the verification tests are selected and the following noted:

- Identification numbers, if any
- Dimensions are measured: inlet and outlet openings
- Photos are taken
- Check that CEVs can be mounted in the well and fit tightly

#### Trial runs

A few trial runs are carried out with one of the CEVs to be tested in order to see if everything works as planned. The results of the trial runs are processed as relationships between outflow,  $Q_{outflow}$  ( $\ell$ /s) and pressure above the invert of outlet opening, H (m).

$$Q_{outflow,1} = Q_{inflow} -1000^* \Delta p_{rw}^* \pi^* (R_{rw}^2 + R_{it}^2 + r_{rw}^2 - r_{ind}^2) / \Delta t$$
[1]

and

$$Q_{outflow,2} = 1000^{*} \Delta p_{ot}^{*} \pi^{*} (R_{ot}^{2} + r_{ot}^{2}) / \Delta t + Q_{overflow}$$
<sup>[2]</sup>

 $\Delta p_{ot}$  is the pressure difference in the outflow tank during the time  $\Delta t$ . When the inflow is kept constant, the water level in the outlet tank will be constant after a while ( $\Delta p_{ot} = 0$ )

R<sub>ot</sub> is the radius of the outlet tank (=0.147m)

r<sub>rw</sub> is the radius of the Plexiglas riser (=0.036m)

 $Q_{inflow}$  is the measured inflow ( $\ell$ /s) to the inlet tank

 $Q_{overflow}$  is the measured flow ( $\ell$ /s) from the outlet tank

The performance is compared to the theoretical one, and possible deviations between the two performance curves are analysed. Are possible deviations caused by

- inaccurate measurements such as fluctuations in the signals?
- errors in the model set-up?
- other reasons?

Formula [2], which is based on the measurements on the outflow side, will be used to calculate the Q–H relationship. Formula [1] will be used to support these calculations, but due to the large surface area of the inlet tank and of the regulator well, even small disturbances of the surface





areas will be registered by the pressure transducer. This may reveal large fluctuations in the calculated outflow. The time series of the flow based on the inflow conditions may thus need to be low-pass filtered with rather low cut-off frequency. This may cause that some information will be lost around the bump on the relation.

It should be noted that it may be necessary to approximate the time series from the flowmeters and pressure transducers to fitted polynomials as the fluctuations, which are unavoidable, may make it difficult to interpret the results otherwise.

#### Final adjustments of test set-up

Does the calibration and test run give rise to any problems?

- Is it possible to run at an acceptable flow rate?
- Are the fluctuations in the measurement time series acceptable?
- Is the Q-H relationship almost as expected?
- Any problems at the outlet? Should it be adjusted?
- Well stability?
- Miscellaneous?

#### 3.2.4 Task 4 – Verification testing

*Objective:* The objective of this task is to test four selected CEVs. Based on electronicallyrecorded (logged) measurements of flow and water pressure (height), the performance is evaluated and verified. The following CEVs have been proposed for testing:

- 1. CEV 1.4l/s @ 1.00m 100%
- 2. CEV 4.9l/s @ 1.50m 100%
- 3. CEV 10.5l/s @ 2.00m 78%
- 4. CEV 10.5l/s @ 2.00m 100%

The name of the CEV indicates the design maximum flow, for example  $Q_{design}$ = 1.4t/s (CEV no 1), and the correlated maximum pressure height for this CEV is  $H_{design}$ = 1.00m. The percentage (100% and 78%) indicates the percentage of the design flow at the point/bump, where the vortex is formed.

*Work plan:* The verification testing of the CEVs comprises the following work items:

- Verification testing, including
  - 3-4 runs at specified pump flows for each CEV model; see Table 3.1. The following inflows (Flows 1 to 4) are proposed for the CEVs to be tested. Note that Flow 1 is proposed to be slightly higher than the design flow, as it may be necessary in order to pass the bump. The inflows are proposed in order to achieve an average water level rise in the regulator well, which is less than approximately 1.5mm/s. This average water level rise is a design criterion.
  - Although desirable, it is not required that the flow is completely constant during each test.





| Table 3.1 | Proposed test | programme |
|-----------|---------------|-----------|
|           |               |           |

| CEV type                   | Design flow<br>(ℓ/s) | Flow 1<br>(ℓ/s) | Flow 2<br>(ℓ/s) | Flow 3<br>(୧/s) | Flow 4<br>(୧/s) |
|----------------------------|----------------------|-----------------|-----------------|-----------------|-----------------|
| CEV 1.4ł/s @ 1.00m – 100%  | 1.4                  | 1.9             | 3.1             | 4.8             | 6.3             |
| CEV 4.9ł/s @ 1.50m – 100%  | 4.9                  | 5.9             | 6.6             | 8.3             | 10              |
| CEV 10.5ł/s @ 2.00m – 78%  | 10.5                 | 9.2             | 9.9             | 11.6            | 13.3            |
| CEV 10.5ł/s @ 2.00m – 100% | 10.5                 | 11.5            | 12.2            | 13.9            | 15.6            |

- To demonstrate the variability, one of the runs for one of the CEV-models must be repeated 3 times. If the variation of the triplicates is more than 10% (eg in the bump), triplicate runs have to be made for all the other CEV models too.
- In addition to the tests with the CEVs, a reference test with no CEV shall be performed; this test will be carried out with an inflow of around 5t/s. During this test, the CEV is replaced by an orifice with diameter corresponding to the smallest tested CEV.
- The inflow is started with water level in the regulator well corresponding to the invert level in the CEV. The inflow should continue until the design H is passed or the water level is stagnant, which is assumed to take place for design flow. When the design water level is reached, the inlet valve is closed, the inflow is stopped, and the well for one test shall drain until empty (to the invert level of the CEV). For the other three tests the inlet tank and the regulator well will just be emptied using the evacuation valve.
- Electronically-recorded (logged) measurement and evaluation of the flows and water pressure during the test runs. The logging of inflow, outflow and water pressures (mH<sub>2</sub>O) should continue throughout the entire test run.

#### 3.2.5 Task 5 – Documentation of verification

*Objective:* The objective is to ensure proper documentation and data management during the verification testing.

*Work plan:* The documentation of the verification testing comprises the following work items:

- Use of amendment and deviation forms in case of changes to the developed test plan. Templates to be found in /3/.
- Creation and use of a test logbook, where also deviations from the stated operating conditions (eg flow, pressure) must be documented. The test logbook (see also Appendix D) contains:
  - Results of review of test set-up, instrument positions, etc
  - Notes on instrument calibration/verification tests, date and time
  - Notes on CEVs tested, serial numbers, dimensions, (photos)
  - Description of each verification test with indication of test number, CEV type, target inflow conditions, realised inflow conditions
  - Notes on adverse conditions during the tests such as change of inflow conditions, malfunction of instruments, etc
  - Name/initial of person(s) undertaking the activity and date and time of activity





#### **Operation conditions**

The operational conditions for each verification tests are summarized as follows:

- Check instruments
- Fill water in the inlet tank and regulator well until CEV invert level
- Wait until water level is stable
- Close inlet adjustment valve
- Start data logging, logging of zero level
- Wait 5 minutes
- Start submersible pump
- Open valve until target flow is reached
- Proceed at least until design H is reached
- Close inlet valve
- Stop pump
- Proceed until well is empty for one test with each CEV
- Stop data logging
- For remaining three tests, empty the inlet tank and regulator well with evacuation valve
- Check results

#### **Operation measurements**

The measurements carried out are:

- Inlet flow (l/s) measured by means of flowmeter
- Pressure (mH<sub>2</sub>O) at a position in the lower part of the regulator well
- Pressure (mH<sub>2</sub>O) at a position in the lower part of the outlet tank
- Run off from outlet tank (*l*/s), measured by means of flowmeter

# 3.2.6 Appropriate storage of data from on-line measurements of flow and water pressure – Test staff

The data from the tests are logged by means of a data logger (Type: National Instruments, NI cDAQ-9171 with NI9203 analogue module). The data contain time series from the flowmeters (inflow to the inlet tank and outflow from the outlet tank) and from two pressure transducers mounted in the lower part of the regulator well and in lower part of the outlet tank respectively. The data are sampled with a frequency of at least 10Hz, but up to 1000Hz is possible. A sampling frequency of 10Hz is regarded adequate to obtain a good and sufficient resolution.

The file names are denoted (italics to be changed):

| Calibration tests: | Cal test no_ | _x_instr | ument.extension |
|--------------------|--------------|----------|-----------------|
|--------------------|--------------|----------|-----------------|

Production tests: **Test no\_x\_CEVtype\_target flow.extension** 

Test staff

Jesper Fuchs (JUF) Mogens Hebsgaard (MHE)

Quality Control, test set-up and test execution Project Manager





#### 3.2.7 Test schedule

The tentative test schedule is:

- Model set-up and function tests estimated finalised during
- Calibration/verification of test instruments
- Verification tests
- Report

Week 40/2014 Week 40/2014 Week 40-42/2014 Week 50/2014

#### 3.2.8 Health, safety and waste

Work at the test site by DHI staff will be done according to the DHI rules for safe field work included in the DHI safety rules.





# 4 Measurements and Data Analyses

## 4.1 Measurement parameters and methods

In this section, a summary of the measured data and the analytical methods to be used for calculation of the final results is given, see also Figure 3.1.

- Q<sub>inflow</sub> is the inlet flow; it is measured by means of the flowmeter; unit: t/s, specifications for the instrument are attached in Appendix B
- Q<sub>outflow</sub> is the outlet flow; Q<sub>outflow</sub> is calculated in two ways, see Section 3.2.3 and summary below it is calculated from 1) the inflow and the pressure in the regulator well and 2) from the pressure in the outlet tank and the measured overflow (Q<sub>overflow</sub>) from the outlet tank; see Section 3.2.3
- H is the water level above the invert of the regulator, H is derived from the pressure measurements carried out by the pressure sensor placed in the lower part of the well at a distance a below the regulator invert level, H<sub>rw</sub> = P-a (a is the vertical distance from the pressure transducer to the invert level, a = 0.874m); unit of H and P is mH<sub>2</sub>O, specifications for the instrument are attached in Appendix B
- Filtering or approximation (by polynomial) of the time series of the inflow, outflow and pressures as necessary
- Q<sub>outflow</sub>–H relationships are found and presented and compared to the theoretical relationships

Summarising the two methods for calculations of Q<sub>outflow</sub>:

1) by using the following equation:

$$Q_{outflow,1} = Q_{inflow} - \frac{\Delta Hrw \times Ain \times 1000}{\Delta t}$$

2) by using the following equation:

$$Q_{outflow,2} = Q_{overflow} + \frac{\Delta pot \times Aout \times 1000}{\Delta t}$$

 $\begin{array}{lll} Q_{outflow,2} & \mbox{Flow out of CEV (l/s)} \\ Q_{overflow} & \mbox{Overflow from the outlet tank (l/s)} \\ A_{out} & \mbox{Surface area in the outlet tank and outlet riser pipe (0.075m<sup>2</sup>)} \\ p_{ot} & \mbox{Pressure head in the outlet tank (mH_2O)} \\ \Delta t & \mbox{Time for changing } H_{out} \mbox{ with } \Delta p_{ot} \mbox{ (s)} \end{array}$ 

Method 2 will be used in the calculation of the relation between  $Q_{outflow}$  and H. Method 1 will be used to support quantitatively the results derived by Method 2.

The following procedure is anticipated to take place in the processing of data:

- Data are recorded (logged) with a frequency of 10Hz (0.1s)
- Data are calibrated (to  $\ell$ /s for  $Q_{inflow}$  and  $Q_{overflow}$  and mH<sub>2</sub>O for  $p_{rw}$  and  $p_{ot}$ )
- The calibrated time series are used to find Q<sub>outflow1</sub> and Q<sub>outflow2</sub>
- Q<sub>outflow,2</sub> is low-pass filtered using a cut-off frequency of 0.1Hz





- The relation between Q<sub>outflow,2</sub> and H<sub>rw</sub> is drawn and compared to the theoretical relation (it may be needed to approximate the relations by means of polynomials in order better to describe the details at the bump)
- Q<sub>outflow,1</sub> and Q<sub>outflow,2</sub> are low-pass filtered using a cut-off frequency of 0.001Hz and compared quantitatively

### 4.2 Analytical and measurement performance requirements

Described under Section 3.2.

#### 4.3 Data management

Data management by DHI will follow the filing and archiving rules described in DHI's quality system. All relevant project documents, e-mail communication and data will be stored on the DHI project SharePoint site.

### 4.4 Data storage, transfer and control

The Table below shows a summary of the type of data and recording/storage for the data from the verification tests. Immediate check of data will be performed after the tests with each CEV in order to determine if the quality of the data is acceptable. Final data control will be performed as part of the test report review.

The test plan and test report will be compiled as protected PDF files and will be stored on the DHI project SharePoint Site. Data from on-line measurements will be stored locally on a PC by the data-logger. After completion of the testing, the on-line measurement data will be transferred to DHI and will be stored on the project SharePoint site. The handwritten logbook and completed data report forms will be scanned as PDF documents and stored at the project SharePoint Site.

Any deviation from the test plan will be recorded into the logbook – with date, time, initials and description of reason/event for deviations and action taken.

| Data Type               | Data Media                         | Responsible for<br>recording/storage<br>of data | Timing of data recording/storage | Data Storage              |
|-------------------------|------------------------------------|-------------------------------------------------|----------------------------------|---------------------------|
| Test plan and report    | Protected PDF<br>files             | Test responsible,<br>DHI                        | When approved                    | Files and archives at DHI |
| On-line<br>measurements | Text, (dsf0) and<br>Excel files    | Test responsible and technician, DHI            | During testing                   | Files and archives at DHI |
| Test and set-up details | Logbook and pre-<br>prepared forms | Test responsible,<br>DHI                        | During testing                   | Files and archives at DHI |
| Calculations            | Excel files,<br>MIKEZero files     | Test responsible,<br>DHI                        | During testing                   | Files and archives at DHI |





# 5 Quality Assurance

## 5.1 Test plan review

Internal review of the test plan will be carried out by Jesper Fuchs (JUF), DHI. The proposer, represented by Mr Torben Krejberg will also carry out a review of the test plan. The test plan must be approved by the proposer and the Verification Body before tests are initiated.

### 5.2 Performance control – analysis and measurements

The performance of the set-up will be checked during the calibration/documentation. The model set-up will be checked for leakages. The dimensions of the well, the CEVs, the inlet and outlet tubes, the positions of the measurement instruments will be checked before verification tests are initiated.

The calibration of the pressure sensors will be documented and checked before the verification tests are initiated.

# 5.3 Test system control

The test system will be controlled during the calibration/documentation phase. The data from the data-logger will be checked after each test. If the results are markedly different from the expected values, the system will be checked for possible errors. Depending on this check, the test may be re-run.

## 5.4 Data integrity check procedures

Deviations from the target value of  $Q_{inflow}$  will be documented in the logbook and in the test results. Target results do not need to be reproduced exactly as shown in Table 3.1, as the  $Q_{outflow}$ -H relationships should be independent of  $Q_{inflow}$ .

## 5.5 Test system audits

An internal audit of the test system will be performed by Jesper Fuchs (JUF), DHI. An external test system audit will be performed by Peter Fritzel from the Verification Body.

## 5.6 Test report review

The test report will be reviewed by Jesper Fuchs, DHI, the Proposer represented by Mr Torben Krejberg and by the Verification Body.








### 6 Test Report

The test report will be based on the template that can be found in the DANETV quality manual. The test report will refer to the test plan, and a summary of any amendments to and deviations from the test plan recorded during test from the plans will be included. Templates for reporting amendments and deviations are found in the DANETV quality manual.

The test data report will include all analytical and calculated data as well as a reference to the staff performing the test. The methods of calculation, test measurement and performance parameters from raw data shall be described, unless they are given in the analytical and test methods used. If relevant, details on equipment and software used will be included.

The test report will be reviewed by the test center internal expert and the Proposer and shall be approved by the verification responsible before the verification report is prepared.

### 6.1 Amendment report

The test report section on amendments will compile all changes to the test plan occurring before testing and will contain justifications of amendments and evaluation of any consequences for the test data quality.

### 6.2 Deviations report

The report section on deviations will compile all deviations from this test plan occurring during testing with justification of deviations and evaluation of any consequences for the test data quality.









### 7 References

- /1/ Mosbaek CEV flow regulator verification protocol. DHI. September 2014.
- /2/ EU Environmental Technology Verification pilot programme. General Verification Protocol. Version 1.1. 2014.07.07.
- /3/ DANETV Test Centre Quality Manual, 2013.08.13.









# APPENDICES

The expert in WATER ENVIRONMENTS









# APPENDIX A Terms and Definitions

The expert in **WATER ENVIRONMENTS** 









# Appendix A – Terms and Definitions

The terms and definitions used by the test body are derived from the EU ETV General Verification Protocol, ISO 9001 and ISO 17020.

| Term                                | DANETV                                                                                                                                                              | Comments on the DANETV approach                                                                                                                                                      |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accreditation                       | Meaning as assigned to it by<br>Regulation (EC) No 765/2008                                                                                                         | EC No 765/2008 is on setting out<br>the requirements for accreditation<br>and market surveillance relating to<br>the marketing of products                                           |
| Additional parameter                | Other effects that will be described but are considered secondary                                                                                                   | None                                                                                                                                                                                 |
| Amendment                           | Is a change to a specific verification<br>protocol or a test plan done before<br>the verification or test step is<br>performed                                      | None                                                                                                                                                                                 |
| Application                         | The use of a product specified with respect to matrix, purpose (target and effect) and limitations                                                                  | The application must be defined with<br>a precision that allows the user of a<br>product verification to judge whether<br>his needs are comparable to the<br>verification conditions |
| DANETV                              | Danish centre for verification of environmental technologies                                                                                                        | None                                                                                                                                                                                 |
| Deviation                           | Is a change to a specific verification<br>protocol or a test plan done during<br>the verification or test step<br>performance                                       | None                                                                                                                                                                                 |
| Evaluation                          | Evaluation of test data for a technology product for performance and data quality                                                                                   | None                                                                                                                                                                                 |
| Experts                             | Independent persons qualified on a technology in verification                                                                                                       | These experts may be technical<br>experts, QA experts for other ETV<br>systems or regulatory experts                                                                                 |
| General verification protocol (GVP) | Description of the principles and<br>general procedure to be followed by<br>the EU ETV pilot programme when<br>verifying an individual environmental<br>technology. | None                                                                                                                                                                                 |
| Matrix                              | The type of material that the technology is intended for                                                                                                            | Matrices could be soil, drinking<br>water, ground water, degreasing<br>bath, exhaust gas condensate etc.                                                                             |





| Term                                                      | DANETV                                                                                                                                                                                                                                                                                                                              | Comments on the DANETV approach                                                                                                                                                                                               |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operational parameter                                     | Measurable parameters that define<br>the application and the verification<br>and test conditions. Operational<br>parameters could be production<br>capacity, concentrations of non-<br>target compounds in matrix etc.                                                                                                              | None                                                                                                                                                                                                                          |
| (Initial) performance<br>claim                            | Proposer claimed technical<br>specifications of product. Shall state<br>the conditions of use under which<br>the claim is applicable and mention<br>any relevant assumption made                                                                                                                                                    | The proposer claims shall be<br>included in the ETV proposal. The<br>initial claims can be developed as<br>part of the quick scan.                                                                                            |
| Performance<br>parameters (revised<br>performance claims) | A set of quantified technical<br>specifications representative of the<br>technical performance and potential<br>environmental impacts of a<br>technology in a specified application<br>and under specified conditions of<br>testing or use (operational<br>parameters).                                                             | The performance parameters must<br>be established considering the<br>application(s) of the product, the<br>requirements of society (legislative<br>regulations), customers (needs) and<br>proposer initial performance claims |
| Procedure                                                 | Detailed description of the use of a standard or a method within one body                                                                                                                                                                                                                                                           | The procedure specifies<br>implementing a standard or a<br>method in terms of e.g.: equipment<br>used                                                                                                                         |
| Proposer                                                  | Any legal entity or natural, which<br>can be the technology manufacturer<br>or an authorised representative of<br>the technology manufacturer. If the<br>technology manufactures concerned<br>agree, the proposer can be another<br>stakeholder undertaking a specific<br>verification programme involving<br>several technologies. | Can be vendor or producer                                                                                                                                                                                                     |
| Purpose                                                   | The measurable property that is affected by the product and how it is affected.                                                                                                                                                                                                                                                     | The purpose could be reduction of<br>nitrate concentration, separation of<br>volatile organic compounds,<br>reduction of energy use (MW/kg)<br>etc.                                                                           |
| (Specific) verification protocol                          | Protocol describing the specific<br>verification of a technology as<br>developed applying the principles<br>and procedures of the EU GVP and<br>this quality manual.                                                                                                                                                                | None                                                                                                                                                                                                                          |





| Term                   | DANETV                                                                                                                                                                                                                                                                             | Comments on the DANETV approach                                                                                                                                                                                                                                     |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard               | Generic document established by<br>consensus and approved by a<br>recognised standardization body<br>that provides rules, guidelines or<br>characteristics for tests or analysis                                                                                                   | None                                                                                                                                                                                                                                                                |
| Test/testing           | Determination of the performance of<br>a product for<br>measurement/parameters defined<br>for the application                                                                                                                                                                      | None                                                                                                                                                                                                                                                                |
| Test performance audit | Quantitative evaluation of a measurement system as used in a specific test.                                                                                                                                                                                                        | Eg evaluation of laboratory control<br>data for relevant period (precision<br>under repeatability conditions,<br>trueness), evaluation of data from<br>laboratory participation in proficiency<br>test and control of calibration of<br>online measurement devises. |
| Test system audit      | Qualitative on-site evaluation of test,<br>sampling and/or measurement<br>systems associated with a specific<br>test.                                                                                                                                                              | Eg evaluation of the testing done<br>against the requirements of the<br>specific verification protocol, the test<br>plan and the quality manual of the<br>test body.                                                                                                |
| Test system control    | Control of the test system as used in a specific test.                                                                                                                                                                                                                             | Eg test of stock solutions, evaluation<br>of stability of operational and/or on-<br>line analytical equipment, test of<br>blanks and reference technology<br>tests.                                                                                                 |
| Verification           | Provision of objective evidence that<br>the technical design of a given<br>environmental technology ensures<br>the fulfilment of a given performance<br>claim in a specified application,<br>taking any measurement uncertainty<br>and relevant assumptions into<br>consideration. | None                                                                                                                                                                                                                                                                |









# APPENDIX B

Instrument Specifications: Flowmeters and Pressure Transducers Data Logging Equipment









| Customer No           | me.                | ABB A/S              | - DKABB              |                      |                      | Certificate I        | lumber:                  | 13/1/4/002        | 2759            |         |
|-----------------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------|-------------------|-----------------|---------|
| Customer Re           | f.                 | 234-4500             | 267382               |                      |                      | Accreditatio         | on Number:               |                   |                 |         |
| Tag Number:           |                    | 2011000              |                      |                      |                      | Calibration          | Date:                    | 28 Aug 20         | 13              |         |
| Serial No:            |                    | 3K22000              | 0190399              |                      |                      | Calibration          | Location:                | ABB Ston          | ehouse U.K.     |         |
| ABB Order R           | ef:                | 00004736             | 541                  |                      |                      | Test Rig:            |                          | Rig 4             |                 |         |
| Meter Type:           |                    | WaterMa              | ster                 |                      |                      | Fluid:               |                          | Water             |                 |         |
| Meter Code:           |                    | FEV1111              | 00V1S1S2B1           | A1A0A1A1A1           |                      | Calibration          | Range:                   | 83.33 m3/         | hr              |         |
| Meter Optior          | IS:                | .VO.CWA              | <b>N</b>             |                      |                      | Calibration          | Туре:                    | Comparis          | on              |         |
| Meter Bore:           |                    | 100 mm               |                      |                      |                      | Sensor Fac           | tor Ss:                  | 169.4773          |                 |         |
|                       |                    |                      |                      |                      |                      | Sensor Fac           | tor Ss(t):               | 0.0000            |                 |         |
|                       |                    |                      |                      |                      |                      | Sensor Fac           | tor Sz:                  | -2.1181           |                 |         |
|                       |                    |                      |                      |                      |                      | Sensor Fac           | tor Sz(b):               | 0.0000            |                 |         |
|                       |                    |                      |                      |                      |                      | Accuracy S           | pecification:            | Class 2           | én v Umelo v Te | at      |
|                       |                    |                      | Refe                 | rence                | -                    |                      |                          | <u>Ivre</u>       | ter Under Te    | 0/ Emer |
| Test<br>Run<br>number | Run<br>Time<br>sec | Water<br>Temp<br>° C | Stream<br>1<br>m3/hr | Stream<br>2<br>m3/hr | Stream<br>3<br>m3/hr | Stream<br>4<br>m3/hr | Ref-Lab<br>Flow<br>m3/hr | Flowrate<br>m3/hr | % Cal.<br>Range | % Error |
| 1                     | 60.000             | 27.200               | 20.824               | 0.000                | 0.000                | 0.000                | 20.824                   | 20.808            | 24.970          | -0.08   |
| 2                     | 48.000             | 27.200               | 41.696               | 0.000                | 0.000                | 0.000                | 41.696                   | 41.617            | 49.941          | -0.19   |
| 3                     | 48.000             | 27.200               | 70.022               | 0.000                | 0.000                | 0.000                | 70.022                   | 69.999            | 83.999          | -0.03   |
|                       | 5                  | 10 / C               | Ŀ                    |                      | 3                    |                      |                          |                   |                 |         |
| Error                 | 2<br>1             |                      |                      |                      |                      |                      |                          |                   |                 |         |
| × -                   | 1 –<br>2 –         |                      | 20                   | 4                    | 0                    | 60                   |                          | 00                |                 | 100     |
| -                     | 3 -<br>4 -         |                      |                      |                      |                      |                      |                          |                   |                 |         |
|                       | 5                  |                      |                      |                      |                      |                      |                          |                   |                 |         |

This flowmeter has been wet calibrated at ABB Stonehouse Calibration Facility and is traceable to some/all of the International Standards detailed below ISO 4185, ISO 7278 Part 2, ISO 8316 and ISO 17025 Note, these are the main calibration standards, but due to the complex nature of fluid flow calibration, other standards will apply to parts of the system

| ABB Limited                       | ABB Engineering Shanghai Limited              | ABB Limited                                  |
|-----------------------------------|-----------------------------------------------|----------------------------------------------|
| Oldends Lane, Stonehouse          | No.5, Lane 369, Chuangye Road, Kangquiao Town | 32 Industrial Area                           |
| Gloucestershire, GL10 3TA ENGLAND | Pudong District, Shanghai, 201319, PRC        | NIT, Faridabad - 121001, Haryana, Ind        |
| Tel; +44 (0) 1453 826661          | Tel: +86 (0) 21 61056666                      | Tel: +91 129 2448100                         |
| Fax: +44 (0) 1453 829671          | Fax: +86 (0) 21 61056992                      | Fax: +91 129 4023006                         |
| e-mail: flow@gb.abb.com           | e-mail: china instrumentation@cn.abb.com      | e-mail: abb.instrumentation@in.abb.co        |
| ABB Automation                    | ABB Automation GmbH                           | ABB Automation Inc.                          |
| Bapaume Rd                        | Dransfelder Str. 2                            | 125 East County Line Road                    |
| Moorebank, NSW 2170 AUSTRALIA     | D-37079 Göttingen GERMANY                     | Warminster, PA 18974 U.S.A                   |
| Tel: +61 2 9821 0111              | Tel: +49 (0) 551 9050                         | Tel: +1 215 674 6000<br>Fax: +1 215 674 6394 |



ABB



CERTIFICATE OF CALIBRATION

| Customer N            | ame:               | ABB A/S              | - DKABB              |                      |                      | Certificate          | Number:                  | 13/1/4/00                       | 2989            |         |  |
|-----------------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------|---------------------------------|-----------------|---------|--|
| Customer R            | ef:                | 234-450              | 0270862              |                      |                      | Accreditation        | on Number:               |                                 |                 |         |  |
| Tag Number            | r:                 |                      |                      |                      |                      | Calibration          | Date:                    | 15 Oct 2013                     |                 |         |  |
| Serial No:            |                    | 3K22000              | 0194712              |                      |                      | Calibration          | Location:                | ABB Ston                        | ehouse U K      |         |  |
| ABB Order I           | Ref:               | 0000487              | 769                  |                      |                      | Test Ria:            |                          | Rig 4<br>Water<br>83.33 m3/br   |                 |         |  |
| Meter Type:           |                    | WaterMa              | aster                |                      |                      | Fluid:               |                          |                                 |                 |         |  |
| Meter Code:           | :                  | FEV111               | 100V1S1S2B1          | A1A0A1A1A1           |                      | Calibration          | Range:                   |                                 |                 |         |  |
| Meter Optio           | ns:                | .VO.CWA              | Ą                    |                      |                      | Calibration          | Type:                    | Comparison                      |                 |         |  |
| Meter Bore:           |                    | 100 mm               |                      |                      |                      | Sensor Factor Ss:    |                          | 172 1297                        |                 |         |  |
|                       |                    |                      |                      |                      |                      | Sensor Fac           | tor Ss(t):               | 0.0000                          |                 |         |  |
|                       |                    |                      |                      |                      |                      | Sensor Fac           | tor Sz:                  | -2.8350                         |                 |         |  |
|                       |                    |                      |                      |                      |                      | Sensor Fac           | tor Sz(b):               | 0.0000                          |                 |         |  |
|                       |                    |                      |                      |                      |                      | Accuracy S           | pecification:            | Class 2                         |                 |         |  |
|                       |                    |                      | Refe                 | rence                |                      |                      |                          | Ме                              | ter Under T     | est     |  |
| Test<br>Run<br>number | Run<br>Time<br>sec | Water<br>Temp<br>° C | Stream<br>1<br>m3/hr | Stream<br>2<br>m3/hr | Stream<br>3<br>m3/hr | Stream<br>4<br>m3/hr | Ref-Lab<br>Flow<br>m3/hr | Test Meter<br>Flowrate<br>m3/hr | % Cal.<br>Range | % Error |  |
| 1                     | 60.000             | 23.00                | 20.568               | 0.000                | 0.000                | 0.000                | 20.568                   | 20.578                          | 24.694          | 0.05    |  |
| 2                     | 48.000             | 23.00                | 41.496               | 0.000                | 0.000                | 0.000                | 41.496                   | 41.531                          | 49.837          | 0.08    |  |
| 3                     | 48.000             | 23.00                | 70.320               | 0.000                | 0.000                | 0.000                | 70.320                   | 70 380                          | 84 458          | 0.09    |  |



This flowmeter has been wet calibrated at ABB Stonehouse Calibration Facility and is traceable to some/all of the International Standards detailed below ISO 4185, ISO 7278 Part 2, ISO 8316 and ISO 17025 Note, these are the main calibration standards, but due to the complex nature of fluid flow calibration, other standards will apply to parts of the system

| ABB Limited                       | ABB Engineering Shanghai Limited              | ABB Limited                             |
|-----------------------------------|-----------------------------------------------|-----------------------------------------|
| Oldends Lane, Stonehouse          | No.5, Lane 369, Chuangye Road, Kangquiao Town | 32 Industrial Area                      |
| Gloucestershire, GL10 3TA ENGLAND | Pudong District, Shanghai, 201319, PRC        | NIT, Faridabad - 121001, Haryana, India |
| Tel: +44 (0) 1453 826661          | Tel: +86 (0) 21 61056666                      | Tel: +91 129 2448100                    |
| Fax: +44 (0) 1453 829671          | Fax: +86 (0) 21 61056992                      | Fax: +91 129 4023006                    |
| e-mail: flow@gb.abb.com           | e-mail: china.instrumentation@cn.abb.com      | e-mail: abb.instrumentation@in.abb.com  |
| ABB Automation                    | ABB Automation GmbH                           | ABB Automation Inc.                     |
| Bapaume Rd                        | Dransfelder Str. 2                            | 125 East County Line Road               |
| Moorebank, NSW 2170 AUSTRALIA     | D-37079 Göttingen GERMANY                     | Warminster, PA 18974 U.S.A              |
| Tel: +61 2 9821 0111              | Tel: +49 (0) 551 9050                         | Tel: +1 215 674 6000                    |
| Fax: +61 2 9821 0950              | Fax: +49 (0) 551 905711                       | Fax: +1 215 674 6394                    |

13/1/4/002989 Page 1 of 1





#### Calibration / Test Certificate Test Description

| Custom<br>ABB A/S | er:<br>S - DKABB |          |           |               |          | Test Descr      | iption | 144003 337011      |                  | ARR      |
|-------------------|------------------|----------|-----------|---------------|----------|-----------------|--------|--------------------|------------------|----------|
|                   |                  |          |           |               |          |                 |        | Certificate Number | 2/1/D&D/1980     |          |
|                   |                  |          |           |               |          | Equipment       | Used   | ID No              | Cal Due          |          |
|                   |                  |          |           |               |          | Timer           |        | KEN 1239           | 27/10/12         |          |
|                   |                  |          |           |               |          | Scale 1         |        | KEN 2544           | 17/08/12         |          |
| Calibrat          | ion Type:        |          | Gravimet  | ric           |          | Scale 2         |        | <b>KEN 2130</b>    | 15/11/12         |          |
| Meter T           | ype:             |          | WaterMa   | ster V. Class | 2        | W. Temp         |        | Ken 1845           | 22/11/12         |          |
| Sensor            | Serial No:       |          | 3k220000  | 144003        |          | Sensor So       | an'    | -195 23            | 22011112         |          |
| Transmi           | itter Serial No  | D:       | KEN3049   |               |          | Sensor Zer      | 0      | -1 48              |                  |          |
| Sensor            | DN:              |          | 50        | mm            |          | Drive Mode      |        | 1.40               |                  |          |
| Q3:               |                  |          | 63.0      | m3/hr         |          | Slurry Fact     |        |                    |                  |          |
| Calibrati         | ion Date:        |          | 12-Jul-12 |               |          | Sc. Sv          | •      | -2 -11             |                  |          |
| Operato           | n:               |          | Marc Hen  | derson        |          |                 |        | -, . ,             |                  |          |
| Ambient           | t                |          | 20C, 75%  | ,             |          |                 |        |                    |                  |          |
|                   |                  |          | Reference | 9             |          |                 |        |                    | Meter Under Test |          |
| Run               | Weight           | Run Time | Temp      | Volume        | Flowrate | Pulse<br>Factor | Pulses | Flowrate           | Error            | Comments |
|                   | kg               | seconds  | °C        | litres        | l/s      |                 |        | Vs                 | %                |          |
| 1                 | 1001.1           | 650.71   | 27.1      | 1005.680      | 1.546    | 70              | 70574  | 1,549              | 0.25%            |          |
| 2                 | 1001.4           | 359.87   | 27.0      | 1005.953      | 2.795    | 40              | 40287  | 2.799              | 0.12%            |          |
| 3                 | 1004.3           | 182.17   | 26.9      | 1008.839      | 5.538    | 20              | 20186  | 5.540              | 0.05%            |          |







# LT100

### Submersible transmitter for level measurement in liquids



Level transmitter with submersible probe in stainless steel for level measurement in vessels where pressure connection in the bottom of the vessel is not possible or desirable. For exampel pump pits, reservoirs or plastic tanks.

- LT100 has microcomputer based electronics.
- HART communication.
- Accuracy 0,1 %.
- Configuration through HART communication from PC with the program PI100 or with a standard hand held HART terminal.
- Withstands mediatemperatures up to 80 °C continuously.
- Well tested and approved for EExia according to ATEX and CE (EMC and PED).

 Lightning protected (option). Fullfills the demands for Class 1 testing according to IEC61643-1, 5 kA (10/350 uS).

This means that the transmitter can withstand a stroke of lightning close to the supply/signal cables. (Not available togheter with EExia approval.)

- Stainless steel measurment probe with a rugged Hastelloy C 276 diaphragm (others on request).
- Embossed diaphragm, insensitive to particles and contact. Can easily be cleaned without deformation.
- Big span turn down ratio. Down to 1/30 of sensor limit.









#### Types and order codes:

The transmitters order codes for different configurations can be found from the table below.

| LT100XX-XXXX |                                                          |                       |                |                                          |                        |  |  |
|--------------|----------------------------------------------------------|-----------------------|----------------|------------------------------------------|------------------------|--|--|
| Electronic   | Design                                                   | Diaphragm             | Connection     | Pressure range                           | Measuring<br>principle |  |  |
| H = Hart     | E= Explosion-<br>proof Exia<br>L= Lightning<br>protected | 4= Hastelloy<br>C-276 | 0= Submersible | 2= 3,5 mH2O<br>4= 20 mH2O<br>6= 200 mH2O | 0= Gauge<br>pressure   |  |  |

#### Ordering example

Lightning protected level transmitter with submersible measuring probe, 10 m cable and calibrated range 0-1,5 m water level will have the order code: LT100HL-4020 with calibrated range 0-1,5 mH2O

#### Description

LT100 is a level transmitter for applications where pressure connection in the bottom of the vessel is not possible or desirable, for exampel pump pits. LT100 consists of a measurement probe with the diameter 31 mm. The probe has a Hastelloy C-276 measuring diaphragm for highest corrosion resistance (other material as options). The probe are suspended in its connection cable. Standard lenght for the probe cable is 10 m, but can on be delivered in lenght up to 500 m, max range 200 mH2O (cable lenght over 500 m on request). Connection of the probe cable can be done in optional connection box. A specially designed connection box can be delivered as an accessorie. This box is equiped with an appropriate connection for the

probe cables atmoshperic vent tube. Its also possible to equip this box

with a local display. LT100 can as an option be delivered with a good lightning protection (see next page for

description). LT100 can as an option also be

delivered in intrinsic safe design, EExia.

#### Function

LT100 has a piezoresistive sensor connected to the media by means of a diaphragm and a capillary tube. The media pressure acts on the diaphragm

and is tranfered to the sensor through a pressure intermediate oil. Since this oil completely fills the volume between the diaphragm and the sensor the diaphragm movement is very small when the pressure changes. Since the diaphragm are embossed to the surface underneath it is very insensitive to particles and contact. The capillary tube protects the sensor from high overloads because of short pressure shocks. To obtain atmospheric pressure on the back side of the sensor (for reference pressure) it is connected to the surrounding through a capillary tube inside the probe cable.

LT100 has microcomputer-based electronics, which communicate with the outside world with 4 to 20 mA signal as well as HART communication. The electronics measure and converts the output signal from the pressure dependent sensor bridge to digital values. Furthermore, the total resistance of the sensor bridge is measured and these values are converted to digital temperature values.

The electronics perform compensation for temperature drift of the sensor by means of compensation values entered at the factory calibration and at the same time the temperature measurement is also calibrated. Compensation for the nonlinearity in the sensor is done in the same manner. Different kinds of transfer functions, such as linear, square root, curves..., can be selected. The electronics perform the calculation for the selected transfer function and then the digital value is converted to analogue for the 4 to 20 mA current loop. The digital value can also be read via HART communication in optional engineering units, percentage or current.

LT100 can be configured/ calibrated fully by means of a hand terminal or a PC via HART communication.

#### To consider

Dont expose the diaphragm to unnecessary damage (even though its very robust and insensitive). Dont descend the probe so that it stands on the bottom of the vessel.

Highest media temperature is +80°C.

Make sure that the vent tube is connected to the surrounding atmosphere without the risk for plugging.

If the media are turbulent or flowing fasten the probe appropriately.

#### Lightning protection

As an option LT100 can be equiped with lightning protection. The transmitter will then have the code LT100HL where L indicates "Lightning protected". This option can not be combined with the





| Туре:                     | Electronic submersible level<br>transmitter with<br>microcomputer based<br>electronics                                             | Series resistance:                 | R kohm = (Supply voltage -<br>11)/20. For HART<br>communication min 250 ohm                    |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------|
| Function:                 | Directly connected transmitter<br>with piezoresistive sensor                                                                       | Series resistance<br>dependance:   | Better than +/- 0,1%                                                                           |
| Operating range:          | From -100% to 100% of<br>upper sensorlimit                                                                                         | Supply voltage<br>dependance:      | Better than +/- 0,1%                                                                           |
| Span:                     | Adjustable between upper<br>sensor limit and 1/30 of this.                                                                         | Temperature dependance:            | Better than +/- 0,1% of max<br>range. (From -10 to +70<br>degrees C.)                          |
| Zero:                     | Adjustable between -100%<br>and 100% of upper sensor<br>limit                                                                      | Long time stability:               | Better than 0,08 % per year.                                                                   |
| Overload: 3,5 mH2O:       | Max 25mH2O                                                                                                                         | Vibration dependance:              |                                                                                                |
| 20 mH2O:                  | Max 60 mH2O                                                                                                                        | Perpendicular to the<br>diaphragm: | Max +0,3 kPa/G                                                                                 |
| 200 mH2O:                 | Max 600 mH2O                                                                                                                       | Parallell to the diaphragm:        | Max +0,02 kPa/G                                                                                |
| Material: Diaphragm:      | Hastelloy C-276 (certain<br>coatings on request)                                                                                   | Repeatability:                     | Better than +/- 0,1% of max range.                                                             |
| Other media tuched parts: | Stainless steel SS2353                                                                                                             | Accuracy:                          | Better than +/- 0,1% of max<br>range (including nonliearity,<br>hysteresis and repeatability). |
| Cable:                    | Polyurethane                                                                                                                       | Electrical connection:             | Lose wires                                                                                     |
| Ambient temperature:      | -20 to +80 degrees C                                                                                                               | Wire area:                         | 0,75 mm2                                                                                       |
| Damping:                  | 0,1-10 sec. At delivery 1 sec                                                                                                      | Encapsulation:                     | IP68                                                                                           |
| Media temperature:        | Max 80 degrees C                                                                                                                   | Electrical safety:                 | According to EN 60204-1                                                                        |
| Output:                   | 4-20 mA, two wire<br>connection, signal<br>proportional to the pressure.<br>Max current at overload 22,5<br>mA. HART communication | EMC:                               | According to EN 61326-1-2-3                                                                    |
| Supply:                   | 9-55 V DC                                                                                                                          | Intrinsic safety (option):         | EExia IIC T4 (NEMKO)<br>according to ATEX                                                      |
| Filling liquid:           | AK100, food approved<br>siliconoil (FDA approval)                                                                                  | PED:                               | According to 97/23/EG                                                                          |
| Weight:                   | 700 g including 10 m cable.                                                                                                        | Lightning protection<br>(option):  | Class 1 testing according to<br>IEC61643-1. 5kA (10/350<br>uS).                                |

### Technical specification LT100:



Internet: www.pondus-instruments.com Product home page: www.etp90.com/LT100

© Copyright 2006 PONDUS. All rights reserved. Specifications subject to change without notice. Printed in Sweden.

LT100\_EN\_0902\_ABB





National Instruments, NI cDAQ-9171 with NI9203 analogue module

Typically, when a system is in sleep mode, you cannot communicate with the modules. In sleep mode, the system consumes minimal power and may dissipate less heat than it does in normal mode. Refer to the *Specifications* section for more information about power consumption and thermal dissipation.

# **Specifications**

The following specifications are typical for the range -40 to 70 °C unless otherwise noted. All voltages are relative to COM unless otherwise noted.

### **Input Characteristics**

| Number of channels | .8 analog input channels                |
|--------------------|-----------------------------------------|
| ADC resolution     | . 16 bits                               |
| Type of ADC        | Successive approximation register (SAR) |
| Nominal input      |                                         |
| Unipolar           | .0 to 20 mA                             |
| Bipolar            | .±20 mA                                 |

NI 9203 Operating Instructions and Specifications 10

ni.com





© National Instruments Corp.

11 NI 9203 Operating Instructions and Specifications





### Unipolar accuracy

| Measurement Conditions          | Percent<br>of Reading<br>(Gain Error) | Percent<br>of Range <sup>*</sup><br>(Offset Error) |
|---------------------------------|---------------------------------------|----------------------------------------------------|
| Calibrated max (-40 to 70 °C)   | ±0.18%                                | ±0.06%                                             |
| Calibrated typ (25 °C, ±5 °C)   | ±0.04%                                | ±0.02%                                             |
| Uncalibrated max (-40 to 70 °C) | ±0.66%                                | ±0.54%                                             |
| Uncalibrated typ (25 °C, ±5 °C) | ±0.49%                                | ±0.46%                                             |
| * Range equals 21.5 mA.         |                                       |                                                    |

NI 9203 Operating Instructions and Specifications 12

ni.com



.



### Bipolar accuracy

| Measurement Conditions           | Percent<br>of Reading<br>(Gain Error) | Percent<br>of Range <sup>*</sup><br>(Offset Error) |
|----------------------------------|---------------------------------------|----------------------------------------------------|
| Calibrated max (-40 to 70 °C)    | ±0.20%                                | ±0.09%                                             |
| Calibrated typ (25 °C, ±5 °C)    | ±0.05%                                | ±0.02%                                             |
| Uncalibrated max (-40 to 70 °C)  | ±0.74%                                | ±0.66%                                             |
| Uncalibrated typ (25 °C, ±5 °C)  | ±0.54%                                | ±0.55%                                             |
| * Range equals 43 mA (±21.5 mA). |                                       |                                                    |

Scaling coefficients

| Unipolar | 330 | nA/LSB | typ |
|----------|-----|--------|-----|
| Bipolar  | 660 | nA/LSB | typ |

### Unipolar stability

| Offset drift | 63 nA/°C   |
|--------------|------------|
| Gain drift   | ±14 ppm/°C |

© National Instruments Corp.

13 NI 9203 Operating Instructions and Specifications





| Bipolar stability               |
|---------------------------------|
| Offset drift 286 nA/°C          |
| Gain drift±17 ppm/°C            |
| Input bandwidth (-3 dB) 850 kHz |
| Input impedance                 |
| Resistance                      |
| Capacitance 20 pF               |
| Input noise (code-centered)     |
| RMS1 LSB <sub>rms</sub>         |
| Peak-to-peak7 LSB               |
| No missing codes16 bits         |
| INL±3 LSB max                   |
| Crosstalk (at 1 kHz)100 dB      |
| Settling time (to 2 LSB) 5 us   |

NI 9203 Operating Instructions and Specifications 14

ni.com







# APPENDIX C

Specifications of 300mm and 800mm WAVIN Pipes









Spildevand / Gravitation / Dobbeltvæggede rør - X-Stream /



### 300mm sort PP X-Stream regnvandsrør m/muffe sn8 3m 2531014

### Generel information

| EAN        | 5708525374860 |
|------------|---------------|
| Varenummer | 2531014       |
| VVS nr.    | 198863300     |
| DB nr.     | 1443417       |

### Beskrivelse

| Produkttype | Rør          |
|-------------|--------------|
| Materiale   | Polypropylen |
| Farve       | Sort         |
| Ø           | 300          |

### **Teknisk information**



L = 3000 mm,Dimension = 300 ,L2 = 154 mm,Di = 294 mm,Dy = 338 mm,L1 = 3154 mm,Du = 371 mm







Spildevand / Gravitation / Dobbeltvæggede rør - X-Stream /



### 800mm sort PP X-Stream regnvandsrør m/muffe sn8 3m 2531029

### Generel information

| EAN        | 5907444018026 |
|------------|---------------|
| Varenummer | 2531029       |
| VVS nr.    | 198863800     |
| DB nr.     | 1443425       |

### Beskrivelse

| Produkttype        | Rør          | Stivhedsklasse | 0 |
|--------------------|--------------|----------------|---|
| Materiale          | Polypropylen |                |   |
| Farve              | Sort         |                |   |
| ø                  | 800          |                |   |
| Indvendig diameter | 785          |                |   |
| Længde             | 3 M          |                |   |

### **Teknisk information**



Di 785mm
Du 985mm
Dy 895mm
L1 400mm
L2 3400mm
L 3000mm



# APPENDIX D

Check Lists, Pre-tests and Verification Tests







### Appendix D – Check Lists, Pre-tests and Verification Tests

#### Model tests with CEV Flow Regulators

#### Check of calibration of pressure transducer in the regulator well

#### Procedure

This procedure describes the way used to verify the calibration of the pressure transducers.

- 1. Close the outlet from the regulator well
- 2. Fill in water until outlet invert level
- 3. Start recording
- 4. Close the inlet valve and let the water level be undisturbed for at least 5min
- 5. Read also the constant water level at the measure stick by video or at least each minute
- 6. Fill in water until about 1m above pressure transducer
- 7. Repeat 4 and 5
- 8. Fill in water until about 2m above pressure transducer
- 9. Repeat 4 and 5
- 10. Fill in water until about 3m above pressure transducer
- 11. Repeat 4 and 5, but 4 with a duration of at least 10min
- 12. Stop recording

#### Manual readings

| Water levels                              | Reading 1 | Reading 2 | Reading 3 | Reading 4 | Reading 5 |
|-------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| At CEV invert<br>level for outlet<br>pipe |           |           |           |           |           |
| ~+1m                                      |           |           |           |           |           |
| ~+2m                                      |           |           |           |           |           |
| ~+3m                                      |           |           |           |           |           |
|                                           |           |           |           |           |           |
|                                           |           |           |           |           |           |
|                                           |           |           |           |           |           |

| Date:    |  |
|----------|--|
| Test No: |  |
| Test id: |  |





#### Model tests with CEV Flow Regulators

#### Check of calibration of pressure transducer in the outlet tank

#### Procedure

This procedure describes the way used to verify the calibration of the pressure transducer.

- 1. Close the outlet from the outlet tank
- 2. Fill in water until the pressure transducer is covered
- 3. Start recording
- 4. Let the water level be undisturbed in 5 minutes
- 5. Read the constant water level at the measure stick by video or at least each minute in 5 minutes
- 6. Fill in water until about 0.6m above pressure transducer
- 7. Repeat 4 and 5
- 8. Fill in water until about 1.2m above pressure transducer
- 9. Repeat 4 and 5
- 10. Fill in water until about 1.8m above pressure transducer
- 11. Repeat 4 and 5
- 12. Stop recording

#### Manual readings

| Water levels          | Reading 1 | Reading 2 | Reading 3 | Reading 4 | Reading 5 |
|-----------------------|-----------|-----------|-----------|-----------|-----------|
| Transducer<br>covered |           |           |           |           |           |
| ~+0.6m                |           |           |           |           |           |
| ~+1.2m                |           |           |           |           |           |
| ~+1.8m                |           |           |           |           |           |
|                       |           |           |           |           |           |





### Model tests with CEV Flow Regulators

Execution of zero scan

#### Procedure

This procedure describes the way used before start of a series of tests with a new CEV.

| Date:    |                   |              |  |
|----------|-------------------|--------------|--|
| Test No: | CEV model and id: | Target flow: |  |
| Test id: |                   |              |  |

| Action                                 | Check | Time | Signature |
|----------------------------------------|-------|------|-----------|
| Check instruments                      |       | N/A  |           |
| Fill tanks with water until CEV invert |       |      |           |
| Close inlet adjustment valve           |       |      |           |
| Wait until water level is stable       |       |      |           |
| Start data logging (at zero level)     |       |      |           |
| Wait 10 minutes                        |       |      |           |
| Stop data logging                      |       |      |           |




## Model tests with CEV Flow Regulators

## Execution of verification tests

## Procedure

This procedure describes the way used during execution of the tests.

| Date:    |                   |              |
|----------|-------------------|--------------|
| Test No: | CEV model and id: | Target flow: |
| Test id: |                   |              |

| Action                                                                                 | Check | Time | Signature |
|----------------------------------------------------------------------------------------|-------|------|-----------|
| Check instruments                                                                      |       | N/A  |           |
| Close inlet adjustment valve                                                           |       |      |           |
| Fill or empty tanks with water just below CEV invert                                   |       |      |           |
| Start data logging (at level just below zero)                                          |       |      |           |
| Wait 5 minutes                                                                         |       |      |           |
| Start submersible pump                                                                 |       |      |           |
| Open valve until target flow is reached                                                |       |      |           |
| Proceed at least until design H is reached                                             |       |      |           |
| Close inlet valve                                                                      |       |      |           |
| Stop pump                                                                              |       |      |           |
| Proceed until well is empty for one test per CEV                                       |       |      |           |
| Wait 5 minutes                                                                         |       |      |           |
| Stop data logging                                                                      |       |      |           |
| Empty the inlet tank and regulator well by evacuation valve in three of the four tests |       |      |           |
| Check results roughly                                                                  |       |      |           |



# A P P E N D I X D

Test Report





# Mosbaek Verification

# Tests with CEV Flow Regulators



Mosbaek A/S DHI DANETV Test Report February 2015





This test plan has been prepared under the DHI Business Management System certified by DNV-GL to comply with ISO 9001 (Quality Management)



Approved by

Jesper Fuchs, Head of Projects, POT





# **Mosbaek Verification**

Tests with CEV Flow Regulators

Prepared forMosbaek A/SRepresented byMr Torben Krejberg, Technical Director



Test set-up at Mosbaek

| Project manager     | Mette Tjener Andersson                                      |
|---------------------|-------------------------------------------------------------|
| Author              | Mogens Hebsgaard                                            |
| Quality Supervisors | Jesper Fuchs – Mette Tjener Andersson                       |
| Approver            | Jesper Fuchs, Head of Projects, Ports & Offshore Technology |
| Project number      | 11811720                                                    |
| Approval date       | 18 February 2015                                            |
| Revision            | Final : 2.0                                                 |
| Classification      | Restricted                                                  |









# CONTENTS

| 1       | Introduction                                              | 1  |
|---------|-----------------------------------------------------------|----|
| 1.1     | Name of technology                                        | 1  |
| 1.2     | Name and contact of proposer                              | 1  |
| 1.3     | Name of centre/test responsible                           | 1  |
| 1.4     | Reference to test plan and specific verification protocol | 1  |
| 2       | Test Design                                               | 3  |
| 3       | Test Results                                              | 5  |
| 3.1     | Test data summary                                         | 5  |
| 3.1.1   | Brief summary of the test results                         | 5  |
| 3.1.2   | Results of pre-testing                                    | 6  |
| 3.1.2.1 | Test of inlet side                                        | 6  |
| 3.1.2.2 | Test of outlet side                                       | 8  |
| 3.1.2.3 | Calibration of flowmeters                                 | 8  |
| 3.2     | Test results verification tests                           | 8  |
| 3.2.1   | Short description of methodology                          | 8  |
| 3.2.2   | Test results CEV1.4t/s @ 1.00m - 100%                     | 10 |
| 3.2.3   | Test results CEV4.9t/s @ 1.50m – 100%                     | 17 |
| 3.2.4   | Test results CEV10.5t/s @ 2.00m - 100%                    | 21 |
| 3.2.5   | Test results CEV10.5t/s @ 2.00m – 78%                     | 25 |
| 3.2.6   | Test results sharp edged orifice                          | 29 |
| 3.3     | Test performance observation                              |    |
| 3.4     | Test quality assurance summary, including audit result    |    |
| 3.5     | Details on amendments to and deviations from test plan    | 31 |
| 4       | References                                                | 33 |

# APPENDICES

APPENDIX A

Terms and Definitions

## APPENDIX B

Test Data Report

## **APPENDIX C**

Test Plan Deviation Reports

## APPENDIX D

Comparison between Method 1 and Method 2 for Calculation of Outlet Flow





## **FIGURES**

| Figure 3.1  | Relation between output from pressure transducer and water level, regulator well                  | 6  |
|-------------|---------------------------------------------------------------------------------------------------|----|
| Figure 3.2  | Relation between time and H, calibration tests with inlet pressure transducer                     | 7  |
| Figure 3.3  | Relation between output from pressure transducer and water level, outlet tank                     | 8  |
| Figure 3.4  | Photo of one of the tested CEV's (CEV 4.9l/s @ H=1.50m) showing inlet and outlet                  |    |
|             | openings                                                                                          | 9  |
| Figure 3.5  | Photos of CEV 1.4t/s @ 1.00m - 100%                                                               | 10 |
| Figure 3.6  | Results of tests 2, 5 and 6, moving averaging over 20s used, CEV 1.4t/s @1.00m                    | 12 |
| Figure 3.7  | Results of tests 2, 5 and 6, moving averaging over 100s used, CEV 1.4t/s @1.00m                   | 13 |
| Figure 3.8  | Measured relations between Q <sub>inflow</sub> and Q <sub>bump</sub> , CEV 1.4t/s @ 1.00m - 100%  | 14 |
| Figure 3.9  | Results of tests with CEV 1.4t/s @ 1.00m - 100%, moving averaging over 20s used                   | 15 |
| Figure 3.10 | Results of tests with CEV 1.4t/s @ 1.00m - 100%, moving averaging over 100s used                  | 16 |
| Figure 3.11 | Photos of the CEV 4.9t/s @ 1.50m - 100%                                                           | 17 |
| Figure 3.12 | Measured relations between Q <sub>inflow</sub> and Q <sub>bump</sub> , CEV 4.9ℓ/s @ 1.50m – 100%, | 18 |
| Figure 3.13 | Results of tests with CEV 4.9t/s @ 1.50m - 100%, moving averaging over 20s used                   | 19 |
| Figure 3.14 | Results of tests with CEV 4.9t/s @ 1.50m - 100%, moving averaging over 100s used                  | 20 |
| Figure 3.15 | Photos of the CEV 10.5 l/s @ 2.00m - 100%                                                         | 21 |
| Figure 3.16 | Measured relations between Q <sub>inflow</sub> and Q <sub>bump</sub> , CEV 10.5ℓ/s @ 2.00m – 100% | 22 |
| Figure 3.17 | Results of tests with CEV 10.5t/s @ 2.00m - 100%, moving averaging over 20s used                  | 23 |
| Figure 3.18 | Results of tests with CEV 10.5t/s @ 2.00m - 100%, moving averaging over 60s                       | 24 |
| Figure 3.19 | Photos of the CEV 10.5l/s @ 2.00m - 78%                                                           | 25 |
| Figure 3.20 | Measured relations between Q <sub>inflow</sub> and Q <sub>bump</sub> , CEV 10.5ℓ/s @ 2.00m - 78%  | 26 |
| Figure 3.21 | Results of tests with CEV 10.5t/s @ 2.00m - 78%, moving averaging over 20s used                   | 27 |
| Figure 3.22 | Results of tests with CEV 10.5t/s @ 2.00m - 78%, moving averaging over 60s used                   | 28 |
| Figure 3.23 | Measured and theoretical Q - H relations                                                          | 29 |

# TABLES

| Table 2.1  | Test programme; the flow conditions are the measured average inflow through the tests | 3  |
|------------|---------------------------------------------------------------------------------------|----|
| Table 3.1  | Summary of test results                                                               | 5  |
| Table 3.2  | Test inflow conditions, CEV 1.4t/s @ 1.00m - 100%                                     | 11 |
| Table 3.3  | Test results, CEV 1.4t/s @ 1.00m - 100%, investigation of variation                   | 11 |
| Table 3.4  | Test results, CEV 1.4t/s @ 1.00m - 100%                                               | 14 |
| Table 3.5  | Test conditions, CEV 4.9 l/s @ H=1.50m - 100%                                         | 17 |
| Table 3.6  | Test results, CEV 4.9l/s @ 1.50m - 100%                                               | 18 |
| Table 3.7  | Test conditions, CEV 10.5 l/s @ 2.00m - 100%                                          | 21 |
| Table 3.8  | Test results, CEV 10.5l/s @ 2.00m - 100%                                              | 22 |
| Table 3.9  | Test conditions, CEV 10.5 l/s @ 2.00m - 78%                                           | 25 |
| Table 3.10 | Test results, CEV 10.5l/s @ 2.00m - 78%                                               | 26 |
| Table 3.11 | Test conditions, sharp edged orifice                                                  | 29 |





# NOTATION

| Symbol                  | Description                                                                        | Unit                |
|-------------------------|------------------------------------------------------------------------------------|---------------------|
| Q <sub>inlet</sub>      | The inlet flow pumped into the inlet tank                                          | [{/s]               |
| Q <sub>overflow</sub>   | Overflow from the outlet tank                                                      | [{/s]               |
| Q, Q <sub>outflow</sub> | Flow out of the CEV                                                                | [{/s]               |
| Q <sub>bump</sub>       | Maximum flow out of the CEV at the bump                                            | [{/s]               |
| Q <sub>design</sub>     | Design flow out of the CEV (at H <sub>design</sub> )                               | [{/s]               |
| R <sub>rw</sub>         | Radius of regulator well                                                           | [m]                 |
| R <sub>it</sub>         | Radius of inlet tank                                                               | [m]                 |
| r <sub>rw</sub>         | Radius of inlet riser pipe                                                         | [m]                 |
| r <sub>in</sub>         | Radius of inlet pipe                                                               | [m]                 |
| A <sub>in</sub>         | Surface area of the inlet side (inlet tank, regulator well, riser and inlet pipes) | [m <sup>2</sup> ]   |
| A <sub>out</sub>        | Surface area of the outlet tank and outlet riser pipe                              | [m <sup>2</sup> ]   |
| p <sub>ot</sub>         | Pressure head in the outlet tank                                                   | [mH <sub>2</sub> O] |
| p <sub>rw</sub>         | Pressure head in the regulator well                                                | [mH <sub>2</sub> O] |
| Н                       | Water level above CEV invert level in the regulator well                           | [mH <sub>2</sub> O] |
| H <sub>out</sub>        | Water level in the outlet tank                                                     | [mH <sub>2</sub> O] |
| H <sub>design</sub>     | Design water level above invert level for actual CEV                               | [mH <sub>2</sub> O] |
| RSD                     | Relative standard deviation                                                        | [%]                 |
| g                       | Acceleration due to gravity                                                        | [m/s <sup>2</sup> ] |









## 1 Introduction

**Environmental technology verification (ETV)** is an independent (third party) assessment of the performance of a technology or a product for a specified application, under defined conditions and quality assurance.

The objective of this verification and the testing is to evaluate the performance of a **vertical centrifugal flow regulator, CEV** (**Centrifugal Vertical**) for storm water pipes.

## 1.1 Name of technology

Vertical centrifugal flow regulator, CEV (Centrifugal Vertical), produced by Mosbaek A/S.

Mosbaek produces CEVs for flow capacities from 0.2 to  $80\ell$ /s. The verification covered four CEVs within the range of 1.4 to  $10.5\ell$ /s.

## 1.2 Name and contact of proposer

Mosbaek A/S Værkstedsvej 20 DK-4600 Køge Denmark

Contact: Mr Torben Krejberg, Technical Director, e-mail tk@Mosbaek.dk, phone +45 5663 8580

Mosbaek website: www.mosbaek.dk

## 1.3 Name of centre/test responsible

DHI DANETV Test Centre Agern Alle 5 DK-2970 Hørsholm Denmark

Test responsible: Mogens Hebsgaard, email: mhe@dhigroup.com, phone +45 4516 9414

## 1.4 Reference to test plan and specific verification protocol

This test report is prepared in response to the test design established in the Mosbaek CEV flow regulator Test Plan, /1/, and the Verification Protocol, /2/. The project was carried out in accordance with EU Environmental Technology Verification program, /3/ and DANETV Test Centre Quality Manual, /4/.









## 2 Test Design

The design of the test set-up is thoroughly explained in the Test Plan (/1/).

The tests were divided into five tasks:

- 1. Design of test facility
- 2. Installation of facility
- 3. Test of facility (pre-testing)
- 4. Verification testing
- 5. Documentation

The test facility was set up at the premises of Mosbaek A/S.

The pretesting contained a check of the pressure transducers mounted in the inlet and outlet side, see also /1/.

The verification testing comprised tests with four CEVs and with one orifice. The test programme and conditions are shown in Table 2.1. The final test programme was carried out with flow rates very close to target rates (see Test Plan, /1/).

 Table 2.1
 Test programme; the flow conditions are the measured average inflow through the tests

| CEV type                   | Design flow<br>(ℓ/s) | Flow 1<br>(ℓ/s) | Flow 2<br>(ℓ/s) | Flow 3<br>(୧/s) | Flow 4<br>(ℓ/s) | Flow 4<br>(ℓ/s) | Flow 4<br>(ℓ/s) |
|----------------------------|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| CEV 1.4t/s @ 1.00m – 100%  | 1.4                  | 1.79            | 3.12            | 4.80            | 6.31            | 6.18            | 6.25            |
| CEV 4.9ℓ/s @ 1.50m – 100%  | 4.9                  | 5.89            | 6.52            | 8.20            | 9.99            | -               | -               |
| CEV 10.5ℓ/s @ 2.00m – 78%  | 10.5                 | 8.60            | 9.77            | 11.40           | 12.97           | -               | -               |
| CEV 10.5ℓ/s @ 2.00m – 100% | 10.5                 | 11.32           | 12.07           | 13.75           | 15.24           | -               | -               |
| Sharp edged orifice        | N/A                  | 13.72           | -               | -               | -               | -               | -               |









## 3 Test Results

## 3.1 Test data summary

This section contains a summary of the results of all tests which were carried out. For a more detailed description of the test methodology, refer to /1/ and /2/. The raw data files are listed in Appendix B.

This section includes:

- Results of pre-testing
- Results, CEV 1.4t/s @ 1.00m 100% (six tests)
- Results, CEV 4.9t/s @ 1.50m 100% (four tests)
- Results, CEV 10.5l/s @ 2.00m 78% (four tests)
- Results, CEV 10.5l/s @ 2.00m 100% (four tests)
- Results, Sharp edged orifice (one test)

## 3.1.1 Brief summary of the test results

The test result summary is shown in Table 3.1.

| CEV type                   | Inflow in tests | Q (outflow, | ℓ/s) at bump | Q (outflow, ℓ/s) at H <sub>design</sub> |                             |  |
|----------------------------|-----------------|-------------|--------------|-----------------------------------------|-----------------------------|--|
|                            | ( <i>t</i> /s)  | Claimed     | Measured     | Claimed                                 | Measured                    |  |
| CEV 1.4t/s @ 1.00m – 100%  | 1.79 to 6.31    | 1.40        | 1.22 – 1.45  | 1.40                                    | 1.42 – 1.45                 |  |
| CEV 4.9l/s @ 1.50m - 100%  | 5.89 to 9.99    | 4.90        | 4.50 – 5.04  | 4.90                                    | 4.76 – 4.80                 |  |
| CEV 10.5ł/s @ 2.00m – 78%  | 8.60 to 12.97   | 8.19        | 7.57 – 8.74  | 10.50                                   | 10.09 – 10.12 <sup>*)</sup> |  |
| CEV 10.5ł/s @ 2.00m – 100% | 11.32 to 15.24  | 10.50       | 9.75 – 10.67 | 10.50                                   | 10.55 – 10.56               |  |

#### Table 3.1 Summary of test results

<sup>\*)</sup> based on two tests only

The tests with the 100% CEV have shown that there is an almost linear relation between  $Q_{inflow}$  and  $Q_{bump}$  and between  $Q_{inflow}$  and the water level rise in the regulator well. This allows interpolations of the results, which may give estimates of  $Q_{bump}$  for other  $Q_{inflow}$  than tested. The tests indicate that the claimed values of  $Q_{bump}$  generally are obtained for a water level rise of ~1.5mm/s. For lower water level rise,  $Q_{bump}$  will be slightly smaller, and for higher water level rise  $Q_{bump}$  will be slightly larger.

The tests showed that  $Q_{\text{outflow}}$  at  $H_{\text{design}}$  is independent of the inflow for the inflows tested.

Tests with identical inflow conditions were carried out (repeated) with CEV 1.4 $\ell$ /s @ 1.00m – 100%. These tests showed almost identical Q – H relationships.

Tests with the orifice, which had a diameter equal to the outlet diameter of the CEV 1.4t/s @ 1.00m, showed that the outflow through the orifice was 6.36t/s at H=1m or 4.45 times the outflow through the CEV.





## 3.1.2 Results of pre-testing

This subsection includes results of the calibration check of the pressure transducers and estimation of the diameter of the inlet tank. The procedures are described in /1/.

## 3.1.2.1 Test of inlet side

The pre-testing of the inlet side were carried out to

- Check the calibration of the inlet pressure transducer
- Estimate the diameter of the inlet tank
- Determine whether there was any leakage in the intake system

These items were investigated in one test where:

- 1. The outlet from the inlet well was closed off by means of a plug
- 2. Water was pumped into the inlet well at a constant flow rate in 5 steps with approximately 0.5m between the steps. The time between the steps was minimum 5 minutes
- During the 5-minute pauses, the water level in the well was read with time intervals of 1 minute on a ruler attached to the riser pipe in the well. Also video recordings of the water level were made
- 4. The time series of inlet flow and pressure during the test was recorded in a file with sampling frequency of 0.1s<sup>-1</sup>

#### Calibration of inlet pressure transducer

The relation between the water level (mm) in the regulator well and output from the pressure transducer (mA) is shown in Figure 3.1.





It appears the relation between the transducer output and the water level is virtually linear and hence very good. The following relation will be used in all results:  $1mA = 0.224mH_2O$ , which is slightly different (2.5%) from the theoretical calibration:  $1mA = 0.21857mH_2O$ .





## Investigations of leakages in the inlet side

This calibration revealed the following relation between the time and H, see Figure 3.2. H is the calibrated water level in the regulator well above the pressure cell.



Figure 3.2 Relation between time and H, calibration tests with inlet pressure transducer

Closer analysis of the periods with no inflow showed that the levels were constant during these periods and thus, it was concluded that there was no leakage on the inflow side of the set-up.

## Estimation of the inlet tank diameter

The diameter of the inlet tank was estimated from the following formula, see also /1/.

 $Q_{inflow} * \Delta t = -1000*\Delta p_{rw}*\pi^*(R_{rw}^2 + R_{it}^2 + r_{rw}^2 - r_{in}^2) = 1000*\Delta p_{rw}*A_{in}$ 

| <b>Q</b> <sub>inflow</sub> | is the measured inflow (l/s)                                                                    |
|----------------------------|-------------------------------------------------------------------------------------------------|
| $\Delta p_{rw}$            | is the pressure difference (mH <sub>2</sub> O) in the regulator well during the time $\Delta t$ |
| R <sub>rw</sub>            | is the radius of the regulator well (0.3925m)                                                   |
| R <sub>it</sub>            | is the radius of the inlet tank (m)                                                             |
| r <sub>rw</sub>            | is the radius of the Plexiglas riser (=0.036m)                                                  |
| r <sub>in</sub>            | is the radius of the feeding pipe (=0.080m)                                                     |
| A <sub>in</sub>            | is the area of the inlet side                                                                   |
|                            |                                                                                                 |

 $R_{it}$  is the only unknown in the expression. On the basis of the five inflow situations, the dimension of the inlet tank was estimated.

The diameter of the inlet tank was estimated at  $D_{it} = 1.904m$ , RSD (Relative Standard Deviation) = 0.3%.





## 3.1.2.2 Test of outlet side

The pre-testing of the outlet side were carried out to

Check the calibration of the outlet pressure transducer

The relation between the water level (mm) in the outlet tank and output from the pressure transducer (mA) is shown in Figure 3.3.



Figure 3.3 Relation between output from pressure transducer and water level, outlet tank

It appears that the relation between the transducer output and the water level is virtually linear and hence very good. The following relation has been used in all results:  $1mA = 0.224mH_2O$ , which is slightly different (2.5%) from the theoretical calibration:  $1mA = 0.21857mH_2O$ .

## 3.1.2.3 Calibration of flowmeters

The flowmeters were pre-calibrated from the factory, and any further check of the flowmeters calibration was not performed. The calibration factor was  $1mA = 4.340\ell/s$  for the 100mm flowmeters at the inlet and outlet. The calibration factor for the 50mm flowmeter, which was used for the smallest CEV, was  $1mA = 1.094\ell/s$ .

## 3.2 Test results verification tests

This section contains the results of all tests carried out with the CEVs and the orifice.

## 3.2.1 Short description of methodology

The tests with the individual CEV's were carried out in the following sequence:

#### Mounting the CEV

The regulator well was lifted off its base and the CEV was identified and mounted at the outlet connection. The outlet of the CEV was an orifice mounted in an Ø160mm pipe with a rubber gasket to secure that the connection was water tight. A photo of one of the tested CEV's is shown in Figure 3.4.







Figure 3.4 Photo of one of the tested CEV's (CEV 4.91/s @ H=1.50m) showing inlet and outlet openings

#### Zero test

This test lasted for approximately five minutes, and the purpose was to identify the inlet pressure level for a water level in the regulator well corresponding to the invert level in the outlet opening of the CEV.

Before the zero test was initiated, water was filled into the intake tank to a level slightly above the invert level. The zero test was initiated when the outlet from the regulator well was zero.

The inlet pressure average in the zero test was used as the zero (reference) level in the documentation tests with the mounted CEV.

#### Verification tests

Four tests (six tests with CEV 1.4t/s @ 1.00m) with different inflows were carried out with each CEV, while one test was performed with just an orifice. For CEV 1.4t/s @ 1.00m, the same flow was repeated three times to document the variation. During the tests, time series of the inflow and outflow and pressure in regulator well and outlet tank were recorded, see also /1/.

#### Data processing

The data from the tests were processed in order to achieve a relation between H (mH<sub>2</sub>O), which is the head in the inlet tank, relative to the invert level of the CEV outlet opening and Q ( $\ell$ /s), which is the outlet flow.

H is measured directly by means of the inlet pressure transducer. Q is expressed by the measured outflow and the pressure in the outlet tank:

The relations between  $Q = Q_{outflow}$  and H have been calculated using Method 2, see /1/:

$$Q_{outflow} = Q_{overflow} + \frac{\Delta pot \times Aout \times 1000}{\Delta t}$$

Q<sub>outflow</sub>: Flow out of CEV (ℓ/s)

 $Q_{overflow}$ : Overflow from the outlet tank ( $\ell$ /s)

A<sub>out</sub>: Surface area in the outlet tank and outlet riser pipe (0.075m<sup>2</sup>)

- pot: Pressure head in the outlet tank (mH<sub>2</sub>O)
- $\Delta t$ : Time for changing H<sub>out</sub> with  $\Delta p_{ot}$  (s)





Q was calculated for time steps of 0.1s. Fluctuations in the signals made it necessary to average the signals, and accordingly the time series for Q underwent a 20s moving averaging. In order to determine the Q value in the bump and at design H, averaging was made by a moving averaging over 100s (CEV 1.4t/s @ 1.00m and CEV 4.9t/s @ 1.5m) and over 60s (CEV 10.5t/s @ 2.00m - 78% and 100%).

Method 1 (see /1/) was generally abandoned. Small and unavoidable fluctuations in the intake pressure caused by the water inflow resulted in large fluctuations in the estimated flow, due to the large surface areas at the inlet side. The time series had to be subjected to intensive averaging to get readable results. A comparison between the results obtained by means of Method 1 and Method 2 for one of the model tests has been included. The results are shown in Appendix D. It appears that, apart from the fluctuations, there is a good agreement between the two methods. However, since the quality of the results with Method 2 was very reliable, while the results obtained by means of Method 1 are subject to large fluctuations, it was chosen to use Method 2 only.

## 3.2.2 Test results CEV1.4t/s @ 1.00m - 100%

#### Description of the CEV

The identification number of this CEV was: 109.1.1



#### Figure 3.5 Photos of CEV 1.4t/s @ 1.00m - 100%

The dimensions of the CEV were checked and found to be in accordance with specifications.





## Test conditions

Table 3.2 shows the test conditions for this CEV.

Table 3.2 Test inflow conditions, CEV 1.4t/s @ 1.00m - 100%

|              | Design flow | Flow 1 | Flow 2 | Flow 3 | Flow 4 | Flow 4 | Flow 4 |
|--------------|-------------|--------|--------|--------|--------|--------|--------|
| Inflow (l/s) | 1.4         | 1.79   | 3.12   | 4.80   | 6.31   | 6.18   | 6.25   |
| Test no      | -           | 1      | 4      | 3      | 2      | 5      | 6      |

For CEV 1.4t/s @ 1.00m, three tests were carried out with Flow 4 to determine the variation.

#### Results

The relations between Q and H for the three tests with the same inflow conditions (Flow 4) are shown in Figure 3.6 and Figure 3.7.

- Figure 3.6: Results of tests 2, 5 and 6, moving averaging over 20s used
- Figure 3.7: Results of tests 2, 5 and 6, moving averaging over 100s used

#### Table 3.3 Test results, CEV 1.4t/s @ 1.00m – 100%, investigation of variation

|                                         | Design flow | Flow 4 | Flow 4 | Flow 4 |
|-----------------------------------------|-------------|--------|--------|--------|
| Inflow (ℓ/s)                            | 1.4         | 6.31   | 6.18   | 6.25   |
| Test no                                 | -           | 2      | 5      | 6      |
| Q <sub>bump</sub> (ℓ/s)                 | 1.4         | 1.45   | 1.43   | 1.43   |
| Q at H <sub>design</sub> ( <b>{</b> /s) | 1.4         | 1.45   | 1.43   | 1.43   |
| Average water level increase (mm/s)     |             | 1.54   | 1.53   | 1.53   |

The variations of  $Q_{bump}$  and Q at  $H_{design}$  are seen to be less than 10 %, and according to the verification protocol, /2/, section 5.1.4, this is then meant that triplicate tests were not required for the remaining CEVs.

DHI





Figure 3.6 Results of tests 2, 5 and 6, moving averaging over 20s used, CEV 1.4t/s @1.00m









In the remaining evaluation of this CEV model, the results from test 2 have been used.

The relations between H and Q are shown in the following figures:

- Figure 3.9: Results of tests 1, 2, 3 and 4 moving averaging over 20s used
- Figure 3.10: Results of tests 1, 2, 3 and 4 moving averaging over 100s used

The tests showed the following values of Q at the bump and at  $H_{design}$ . The Q value at the bump and at design H was derived using the results from the moving averaging over 100s.





|                                     | Design flow | Flow 1 | Flow 2 | Flow 3 | Flow 4 |
|-------------------------------------|-------------|--------|--------|--------|--------|
| Inflow (ℓ/s)                        | 1.4         | 1.79   | 3.12   | 4.80   | 6.31   |
| Test no                             | -           | 1      | 4      | 3      | 2      |
| Q <sub>bump</sub> ({/s)             | 1.4         | 1.22   | 1.31   | 1.38   | 1.45   |
| Q at H <sub>design</sub> (ℓ/s)      | 1.4         | 1.42   | 1.43   | 1.43   | 1.45   |
| H at end of bump (m)                | -           | 0.40   | 0.45   | 0.50   | 0.55   |
| Average water level increase (mm/s) |             | 0.19   | 0.61   | 1.09   | 1.54   |

### Table 3.4 Test results, CEV 1.4t/s @ 1.00m - 100%

It is seen that at **the bump** the average flow was:

Average, tests 1, 2, 3, 4: Q<sub>bump</sub> = 1.34l/s, RSD = 6.8 %<sup>1</sup>

It is seen that at  $\boldsymbol{H}_{\text{design}}$  the average flow was:

• Average, tests 1, 2, 3, 4: Q<sub>Hdesign</sub> = 1.43{/s, RSD = 0.4 %

The measured relations between Q<sub>inflow</sub> and Q<sub>bump</sub> are illustrated in Figure 3.8.



Figure 3.8 Measured relations between  $Q_{inflow}$  and  $Q_{bump}$ , CEV 1.4t/s @ 1.00m - 100%

The run-off relation is seen to follow the same relation as during run-up until the end of the bump. A small bump is seen at  $H \cong 0.05m$  (Figures 3.9 and 3.10), where the rotation in the CEV stops and the outlet opening begins to act as an orifice.

<sup>&</sup>lt;sup>1</sup> Please be aware that the results of Q<sub>bump</sub> are uniquely influenced by Q<sub>inflow</sub>, see Figure 3.8





#### Conclusions

The following conclusions could be drawn:

- The repetition of identical test input (tests 2, 5 and 6) gave almost identical results
- Q<sub>bump</sub> increases with increasing Q<sub>inflow</sub>
- The end of the bump takes place for H = 0.40-0.55. The higher inlet flow, the higher H at the end of bump
- Q<sub>max</sub> at the bump takes place for H = 0.15-0.25m



Figure 3.9 Results of tests with CEV 1.4t/s @ 1.00m - 100%, moving averaging over 20s used

DHI





Figure 3.10 Results of tests with CEV 1.4t/s @ 1.00m - 100%, moving averaging over 100s used





## 3.2.3 Test results CEV4.9l/s @ 1.50m – 100%

## Description of the CEV

The identification number of this CEV is: 109.4.1



Figure 3.11 Photos of the CEV 4.91/s @ 1.50m – 100%

The dimensions of the CEV were checked and found to be in accordance with specifications.

#### Test conditions

Table 3.5 shows the test conditions for this CEV.

```
Table 3.5 Test conditions, CEV 4.9l/s @ H=1.50m - 100%
```

|              | Design flow | Flow 1 | Flow 2 | Flow 3 | Flow 4 |
|--------------|-------------|--------|--------|--------|--------|
| Inflow (ℓ/s) | 4.9         | 5.89   | 6.52   | 8.20   | 9.99   |
| Test no      | -           | 9      | 10     | 8      | 7      |

## Results

The relations between H and Q are shown in the following figures:

- Figure 3.13: Results of tests 7, 8, 9 and 10, moving averaging over 20s used
- Figure 3.14: Results of tests 7, 8, 9 and 10, moving averaging over 100s used

The tests showed the following values of Q at the bump and at  $H_{design}$ . The Q value at the bump and at design H has been derived using the results from the moving averaging over 100s.





|                                     | Design flow | Flow 1 | Flow 2 | Flow 3 | Flow 4 |
|-------------------------------------|-------------|--------|--------|--------|--------|
| Inflow (ℓ/s)                        | 4.9         | 5.89   | 6.52   | 8.20   | 9.99   |
| Test no                             | -           | 9      | 10     | 8      | 7      |
| Q <sub>bump</sub> (ℓ/s)             | 4.9         | 4.50   | 4.66   | 4.76   | 5.04   |
| Q at H <sub>design</sub> (ℓ/s)      | 4.9         | 4.77   | 4.76   | 4.78   | 4.80   |
| H at end of bump (m)                | -           | 0.70   | 0.73   | 0.80   | 0.86   |
| Average water level increase (mm/s) |             | 0.53   | 0.71   | 1.21   | 1.71   |

## Table 3.6 Test results, CEV 4.9t/s @ 1.50m - 100%

It is seen that at **the bump** the average flow was:

• Average, tests 7, 8, 9, 10: Q<sub>bump</sub> = 4.74ℓ/s, RSD = 4.8 %<sup>2</sup>

It is seen that at  $\mathbf{H}_{\mathsf{design}}$  the average flow was:

• Average, tests 7, 8, 9, 10: Q<sub>Hdesign</sub> = 4.78ℓ/s, RSD = 0.4 %

The measured relations between  $Q_{inflow}$  and  $Q_{bump}$  are illustrated in Figure 3.12.



Figure 3.12 Measured relations between  $Q_{inflow}$  and  $Q_{bump}$ , CEV 4.9l/s @ 1.50m - 100%,

The run-off relation is seen to follow the same relation as during run-up until the end of the bump. A small bump is seen at  $H \cong 0.10m$  (see Figure 3.13 and Figure 3.14), where the rotation in the CEV stops and the outlet opening begin to act as an orifice.

<sup>&</sup>lt;sup>2</sup> Please be aware that the results of Q<sub>bump</sub> are uniquely influenced by Q<sub>inflow</sub>, see Figure 3.12





## Conclusions

The following conclusions can be drawn:

- $\bullet \qquad Q_{\text{bump}} \text{ increases with increasing } Q_{\text{inflow}}.$
- The end of the bump takes place for H = 0.70-0.85. The higher inlet flow the higher H at the end of bump
- $Q_{max}$  at the bump takes place for H = 0.25-0.30m



Figure 3.13 Results of tests with CEV 4.91/s @ 1.50m - 100%, moving averaging over 20s used







Figure 3.14 Results of tests with CEV 4.91/s @ 1.50m - 100%, moving averaging over 100s used





## 3.2.4 Test results CEV10.5t/s @ 2.00m – 100%

The identification number of this CEV is: **109.3.1** 



Figure 3.15 Photos of the CEV 10.5 (/s @ 2.00m - 100%)

The dimensions of the CEV were checked and found to be in accordance with specifications.

Table 3.7 shows the test conditions for this CEV.

Table 3.7 Test conditions, CEV 10.5l/s @ 2.00m - 100%

|              | Design flow | Flow 1 | Flow 2 | Flow 3 | Flow 4 |
|--------------|-------------|--------|--------|--------|--------|
| Inflow (l/s) | 10.5        | 11.32  | 12.07  | 13.75  | 15.24  |
| Test no      | -           | 14     | 13     | 12     | 11     |

#### Results

The relations between H and Q are shown in the following figures:

- Figure 3.17: Results of tests 11, 12, 13 and 14, moving averaging over 20s used
- Figure 3.18: Results of tests 11, 12, 13 and 14, moving averaging over 60s used

The tests showed the following values of Q at the bump and at  $H_{design}$ . The Q value at the bump and at design H has been derived using the results from the moving averaging over 60s.





|                                     | Design flow | Flow 1 | Flow 2 | Flow 3 | Flow 4 |
|-------------------------------------|-------------|--------|--------|--------|--------|
| Inflow (ℓ/s)                        | 10.5        | 11.32  | 12.07  | 13.75  | 15.24  |
| Test no                             | -           | 14     | 13     | 12     | 11     |
| Q <sub>bump</sub> (ℓ/s)             | 10.5        | 9.75   | 9.99   | 10.32  | 10.67  |
| Q at H <sub>design</sub> (ℓ/s)      | 10.5        | 10.55  | 10.55  | 10.56  | 10.56  |
| H at end of bump (m)                | -           | 0.75   | 0.75   | 0.85   | 0.85   |
| Average water level increase (mm/s) |             | 0.71   | 0.99   | 1.43   | 1.90   |

### Table 3.8 Test results, CEV 10.5l/s @ 2.00m - 100%

It is seen that at **the bump** the average flow was:

Average, tests 11, 12, 13, 14: Q<sub>bump</sub> = 10.18l/s, RSD = 3.9 %<sup>3</sup>

It is seen that at  $\mathbf{H}_{\mathsf{design}}$  the average flow was:

• Average, tests 11, 12, 13, 14:  $Q_{Hdesign} = 10.56\ell/s$ , RSD = 0.1 %

The measured relations between  $Q_{inflow}$  and  $Q_{bump}$  are illustrated in Figure 3.16.



Figure 3.16 Measured relations between  $Q_{inflow}$  and  $Q_{bump},\,CEV\,10.5\ell\!/s$  @ 2.00m-100%

The run-off relation is seen to follow the same relation as during run-up until the end of the bump. A small bump is seen at  $H \cong 0.12m$  (see Figures 3.17 and 3.18), where the rotation in the CEV stops and the outlet opening begins to act as an orifice.

<sup>&</sup>lt;sup>3</sup> Please be aware that the results of Q<sub>bump</sub> are uniquely influenced by Q<sub>inflow</sub>, see Figure 3.16




### Conclusions

The following conclusions can be drawn:

- $\bullet \qquad Q_{\text{bump}} \text{ increases with increasing } Q_{\text{inflow}}.$
- The end of the bump takes place for H = 0.75-0.85m. The higher inlet flow the higher H at the end of bump
- $Q_{max}$  at the bump takes place for H = 0.30-0.35m



Figure 3.17 Results of tests with CEV 10.51/s @ 2.00m - 100%, moving averaging over 20s used







Figure 3.18 Results of tests with CEV 10.51/s @ 2.00m - 100%, moving averaging over 60s





### 3.2.5 Test results CEV10.5l/s @ 2.00m – 78%

The identification number of this CEV is: 109.6.2



Figure 3.19 Photos of the CEV 10.5 l/s @ 2.00m - 78%

The dimensions of the CEV were checked and found to be in accordance with specifications.

Table 3.9 shows the test conditions for this CEV.

Table 3.9 Test conditions, CEV 10.5 l/s @ 2.00m - 78%

|              | Design flow | Flow 1 | Flow 2 | Flow 3 | Flow 4 |
|--------------|-------------|--------|--------|--------|--------|
| Inflow ({/s) | 10.5        | 8.60   | 9.77   | 11.40  | 12.97  |
| Test no      | -           | 21     | 23     | 22     | 20     |

#### Results

The relations between H and Q are shown in the following figures:

- Figure 3.21: Results of tests 20, 21, 22 and 23, moving averaging over 20s used
- Figure 3.22: Results of tests 20, 21, 22 and 23, moving averaging over 60s used

The tests showed the following values of Q at the bump and at  $H_{design}$ . The Q value at the bump and at design H has been derived using the results from the moving averaging over 60s.





|                                     | Design flow | Flow 1 | Flow 2 | Flow 3 | Flow 4 |
|-------------------------------------|-------------|--------|--------|--------|--------|
| Inflow (ℓ/s)                        | 10.5        | 8.60   | 9.77   | 11.40  | 12.97  |
| Test no                             | -           | 21     | 23     | 22     | 20     |
| Q <sub>bump</sub> (ℓ/s)             | 8.2         | 7.57   | 7.96   | 8.39   | 8.74   |
| Q at H <sub>design</sub> (ℓ/s)      | 10.5        | -      | -      | 10.09  | 10.12  |
| H at end of bump (m)                | -           | 0.70   | 0.70   | 0.80   | 0.80   |
| Average water level increase (mm/s) |             | -      | -      | 0.89   | 1.38   |

#### Table 3.10 Test results, CEV 10.5 @ 2.00m - 78%

 $H_{\text{design}}$  could not be reached for Flows 1 and 2 as the inlet flows were smaller than the design flow.

It is seen that at the bump the average flow was:

Average, tests 20, 21, 22, 23: Q<sub>bump</sub> = 8.17ℓ/s, RSD = 6.2 %<sup>4</sup>

It is seen that at  $H_{design}$  the average flow was:

• Average, tests 20, 22: Q<sub>Hdesign</sub> = 10.11ℓ/s, RSD = 0.2 %

The measured relations between Q<sub>inflow</sub> and Q<sub>bump</sub> are illustrated in Figure 3.20.





The run-off relation is seen to follow the same relation as during run-up until the end of the bump. A small bump is seen at  $H \cong 0.12m$  (see Figures 3.21 and 3.22), where the rotation in the CEV stops and the outlet opening begins to act as an orifice.

<sup>&</sup>lt;sup>4</sup> Please be aware that the results of Q<sub>bump</sub> are uniquely influenced by Q<sub>inflow</sub>, see Figure 3.20





### Conclusions

The following conclusions can be drawn:

- $Q_{\text{bump}}$  is increasing with increasing  $Q_{\text{inflow}}.$  The end of the bump takes place for H = 0.70-0.80. The higher inlet flow the higher H at the end of bump
- $Q_{max}$  at the bump takes place for H = 0.25-0.35m



Figure 3.21 Results of tests with CEV 10.5t/s @ 2.00m - 78%, moving averaging over 20s used







Figure 3.22 Results of tests with CEV 10.5t/s @ 2.00m - 78%, moving averaging over 60s used





### 3.2.6 Test results sharp edged orifice

The dimension of the orifice has been checked to be same as the opening of CEV 1.40 l/s @ 1.0m.

Table 3.11 shows the test conditions for this orifice. For comparison, the Q-H relation for one of the tests with the CEV  $1.40\ell$ /s @ 1.0m, which has the same opening as the orifice, is also plotted in the figure.

Table 3.11 Test conditions, sharp edged orifice

|              | Design flow | Flow 1 |
|--------------|-------------|--------|
| Inflow (l/s) | N/A         | 13.72  |
| Test no      | -           | 15     |

### Results

The relations between H and Q are shown in the following Figure 3.23:



Figure 3.23 Measured and theoretical Q - H relations





The theoretical relation has been derived from the formula

 $Q = 1000 \ \mu A_o \sqrt{2g} h_0$ 

- Q is the calculated flow (l/s)
- $\mu$  is the outlet coefficient for circular and sharp edged orifice ( $\mu \approx 0.607$  for the present size)
- $A_o$  is the orifice area  $(A_o = \pi (d_o/2)^2 m^2)$
- g is the acceleration of gravity (9.82m/s<sup>2</sup>)
- $h_0$  is the head relative to the centre of the orifice,  $H = h_0 + d_0/2$  (m)
- d<sub>o</sub> is the diameter of the orifice

Figure 3.23 shows that the measured relation for the sharp edged orifice is almost identical to the theoretical. Comparing the outlet flow at  $H_{design \ for \ CEV}$  (1.0m) obtained with the orifice with the outlet flow obtained with the CEV 1.4 $\ell$ /s @ 1.00m, the following results are obtained:

• Q<sub>CEV</sub> = 1.43ℓ/s

• Q<sub>Orifice</sub> = 6.36ℓ/s

This means that  $Q_{\text{Orifice}} = 4.45$  times  $Q_{\text{CEV}}$  at H = 1.0m.

### 3.3 Test performance observation

Generally no major problems were observed during the tests. The equipment functioned well during all tests. Different floating stuff (especially leaves) passed sometimes through the flowmeters giving odd results, but due to the relative small recording frequency, it was easy to detect these incidents and correct for them.

It was noted that determination of flow by means of the head (measured by means of pressure transducers) and cross-sectional areas of the tanks was very difficult. Small fluctuations in the water level (pressure head) resulted in very large fluctuations in the flow. This was the reason why the estimation of the Q - H relation by means of Method 1 (see /1/) was abandoned. Method 2 did also include an estimate of the outflow partly by regarding the measured water level in the outlet tank. However, due to the limited size of the outlet tank, the influence was small, and almost negligible. In a possible future test set-up, it may be advantageous to reduce the diameter of the outlet tank and neglect the contribution arising from the water level variation in the outlet tank to the outlet flow.

### 3.4 Test quality assurance summary, including audit result

Results of test system control including leakage test and calibration tests of pressure transducers can be found in Section 3.1.2.1 (inlet side) and Section 3.1.2.2 (outlet side).

The documentation tests can be found in Section 3.2:

- Section 3.2.2 describes test results with CEV1.42/s @ 1.00m 100%. The tests included investigation of the variation for tests carried out with identical inlet flows
- Section 3.2.3 describes test results with CEV4.9% @ 1.50m 100%
- Section 3.2.4 describes test results with CEV10.5% @ 2.00m 100%
- Section 3.2.5 describes test results with CEV10.5% @ 2.00m 78%
- Section 3.2.6 describes test results with a sharp edged orifice

Test of variation can be found in Section 3.2.2.





During testing and internal test, system audit was performed by Jesper Fuchs from DHI on 29 September 2014. The verification body ETA Denmark, represented by Peter Fritzel, did test system audit on 2 October 2014.

Conclusions of the internal audit (Jesper Fuchs):

"The test is performed in agreement with the test plan and carried out in a safe manner. Handling and storage of data is safe"

Conclusions of the audit of ETA Denmark (Peter Fritzel):

"There is consistency with the test plan and handling of measurements are carried out in a safe manner"

The full audit reports are available at DHI.

### 3.5 Details on amendments to and deviations from test plan

Four deviations from the original test plan were performed:

#### Deviation 1

Instead of establishing the zero level in the inlet tank for each test, a common zero scan was performed for each CEV type. This zero scan was carried out as an individual test instead of an integrated part of each test.

#### **Deviation 2**

The lowest inflow in the tests with CEV 1.4 $\ell$ /s @ 1.0m was carried out with too low inflow, 1.79 $\ell$ /s instead of 1.9 $\ell$ /s. The inlet flow, which will result in a water level rise of 0.5mm/s can with good accuracy be found by interpolation. Such interpolation shows that an inflow of approximately 2.8 $\ell$ /s will result in a water level rise of 0.5mm/s. The corresponding Q<sub>bump</sub> would be approximately 1.28 $\ell$ /s (see Figure 3.8).

#### Deviation 3

The largest inflows gave for all 100% CEV's larger water level rise than 1.5mm/s, which was predefined as being the largest water level rise to be tested. The inlet flows, which will result in a water level rise of 1.5mm /s, can with good accuracy be found by interpolation. Such interpolations show for:

- CEV 1.4ℓ/s @ 1.0m that such water level rise would be obtained for an inflow of approximately 6.1ℓ/s. The corresponding Q<sub>bump</sub> would be approximately 1.44ℓ/s (see Figure 3.8)
- CEV 4.9ℓ/s @ 1.5m that such water level rise would be obtained for an inflow of approximately 9.2ℓ/s. The corresponding Q<sub>bump</sub> would be approximately 4.93ℓ/s (see Figure 3.12)
- CEV 10.5ℓ/s @ 2.0m that such water level rise would be obtained for an inflow of approximately 13.9ℓ/s. The corresponding Q<sub>bump</sub> would be approximately 10.4ℓ/s (see Figure 3.16)

#### Deviation 4

The test with the orifice was carried out with a larger inflow than predefined. This was done, as the Q - H relation for an orifice is independent of the water level increase, which also is documented by comparing with the theoretical relation, see Figure 3.23.









## 4 References

- /1/ Mosbaek CEV flow regulator test plan. DHI, September 2014
- /2/ Mosbaek CEV flow regulator verification protocol. ETA Danmark, September 2014
- /3/ EU Environmental Technology Verification Programme. General Verification Protocol Version 1.1, 2014.07.07
- /4/ DANETV Test Centre Quality Manual, 2013.08.13









# APPENDICES

The expert in WATER ENVIRONMENTS









# APPENDIX A Terms and Definitions

The expert in **WATER ENVIRONMENTS** 









# A Terms and Definitions

| Term                                   | Definition                                                                                                                                                                                                 | Comments                                                                                                                                                                    |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accreditation                          | Meaning as assigned to it by Regulation (EC) No 765/2008                                                                                                                                                   | EC No 765/2008 is on setting out the requirements for accreditation and market surveillance relating to the marketing of products                                           |
| Additional parameter                   | Other effects that will be described but are considered secondary                                                                                                                                          | None                                                                                                                                                                        |
| Amendment                              | A change to a specific verification<br>protocol or a test plan done before the<br>verification or test step is performed                                                                                   | None                                                                                                                                                                        |
| Analytical laboratory                  | Independent analytical laboratory used to analyse test samples                                                                                                                                             | The test centre may use an analytical laboratory as subcontractor                                                                                                           |
| Application                            | The use of a technology specified with respect to matrix, purpose (target and effect) and limitations                                                                                                      | The application must be defined with a precision that allows the user of a technology verification to judge whether his needs are comparable to the verification conditions |
| CEV                                    | <u>CE</u> ntrifugal <u>V</u> ertical                                                                                                                                                                       |                                                                                                                                                                             |
| DANETV                                 | Danish centre for verification of environmental technologies                                                                                                                                               | None                                                                                                                                                                        |
| Deviation                              | A change to a specific verification<br>protocol or a test plan done during the<br>verification or test step performance                                                                                    | None                                                                                                                                                                        |
| Environmental technologies             | Environmental technologies are all<br>technologies whose use is less<br>environmentally harmful than relevant<br>alternatives                                                                              | The term technology covers a variety of products, processes, systems and services                                                                                           |
| Evaluation                             | Evaluation of test data for a technology for performance and data quality                                                                                                                                  | None                                                                                                                                                                        |
| General verification protocol<br>(GVP) | Description of the principles and general<br>procedure to be followed by the ETV<br>pilot programme when verifying an<br>individual environmental technology                                               | None                                                                                                                                                                        |
| Innovative environmental technologies  | Environmental technologies presenting a<br>novelty in terms of design, raw materials<br>involved, production process, use,<br>recyclability or final disposal, when<br>compared with relevant alternatives | None                                                                                                                                                                        |





| Term                                                   | Definition                                                                                                                                                                                                                                                                                                                                | Comments                                                                                                                                                                                                                          |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Matrix                                                 | The type of material that the technology is intended for                                                                                                                                                                                                                                                                                  | Matrices could be soil, drinking water,<br>ground water, degreasing bath, exhaust<br>gas condensate etc.                                                                                                                          |
| Method                                                 | Action described by e.g. generic<br>document that provides rules, guidelines<br>or characteristics for tests or analysis                                                                                                                                                                                                                  | An in-house method may be used in the absence of a standard, if prepared in compliance with the format and contents required for standards, see e.g. /4/                                                                          |
| Operational parameter                                  | Measurable parameters that define the application and the verification and test conditions                                                                                                                                                                                                                                                | Operational parameters could be flow,<br>pH, temperature, production capacity,<br>concentrations of non-target compounds<br>in matrix etc.                                                                                        |
| (Initial) performance claim                            | Proposer claimed technical<br>specifications of technology. Shall state<br>the conditions of use under which the<br>claim is applicable and mention any<br>relevant assumption made                                                                                                                                                       | The proposer claims shall be included in the ETV proposal. The initial claims can be developed as part of the quick scan.                                                                                                         |
| Performance parameters<br>(revised performance claims) | A set of quantified technical<br>specifications representative of the<br>technical performance and potential<br>environmental impacts of a technology<br>in a specified application and under<br>specified conditions of testing or use<br>(operational parameters)                                                                       | The performance parameters must be<br>established considering the<br>application(s) of the technology, the<br>requirements of society (legislative<br>regulations), customers (needs) and<br>proposer initial performance claims. |
| Potential environmental impacts                        | Estimated environmental effects or<br>pressure on the environment, resulting<br>directly or indirectly from the use of a<br>technology under specified conditions of<br>testing or use                                                                                                                                                    | None                                                                                                                                                                                                                              |
| Procedure                                              | Detailed description of the use of a standard or a method within one body                                                                                                                                                                                                                                                                 | The procedure specifies implementing a standard or a method in terms of e.g.: equipment used                                                                                                                                      |
| Product                                                | Ready to market or prototype stage<br>product/technology, process, system or<br>service based upon an environmental<br>technology                                                                                                                                                                                                         | Technology is used instead of the term product                                                                                                                                                                                    |
| Proposer                                               | Any legal entity or natural person, which<br>can be the technology manufacturer or<br>an authorised representative of the<br>technology manufacturer. If the<br>technology manufactures concerned<br>agree, the proposer can be another<br>stakeholder undertaking a specific<br>verification programme involving several<br>technologies | Can be vendor or producer                                                                                                                                                                                                         |





| Term                           | Definition                                                                                                                                                                                                                                                                               | Comments                                                                                                                                                                                                                                                              |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Purpose                        | The measurable property that is affected<br>by the technology and how it is affected                                                                                                                                                                                                     | The purpose could be reduction of<br>nitrate concentration, separation of<br>volatile organic compounds, reduction of<br>energy use (MW/kg) etc.                                                                                                                      |
| Ready to market technology     | Technology available on the market or at<br>least available at a stage where no<br>substantial change affecting<br>performance will be implemented before<br>introducing the technology on the market<br>(e.g. full-scale or pilot scale with direct<br>and clear scale-up instructions) | None                                                                                                                                                                                                                                                                  |
| Specific verification protocol | Protocol describing the specific<br>verification of a technology as developed<br>applying the principles and procedures<br>of the EU GVP and this quality manual                                                                                                                         | None                                                                                                                                                                                                                                                                  |
| Standard                       | Generic document established by<br>consensus and approved by a<br>recognised standardization body that<br>provides rules, guidelines or<br>characteristics for tests or analysis                                                                                                         | None                                                                                                                                                                                                                                                                  |
| Test body                      | Unit that that plans and performs test                                                                                                                                                                                                                                                   | None                                                                                                                                                                                                                                                                  |
| Verification body              | Unit that plans and performs the verification                                                                                                                                                                                                                                            | None                                                                                                                                                                                                                                                                  |
| Test/testing                   | Determination of the performance of a technology for measurement/para-<br>meters defined for the application                                                                                                                                                                             | None                                                                                                                                                                                                                                                                  |
| Test performance audit         | Quantitative evaluation of a<br>measurement system as used in a<br>specific test                                                                                                                                                                                                         | E.g. evaluation of laboratory control data<br>for relevant period (precision under<br>repeatability conditions, trueness),<br>evaluation of data from laboratory<br>participation in proficiency test and<br>control of calibration of online<br>measurement devises. |
| Test system audit              | Qualitative on-site evaluation of test,<br>sampling and/or measurement systems<br>associated with a specific test.                                                                                                                                                                       | E.g. evaluation of the testing done<br>against the requirements of the specific<br>verification protocol, the test plan and<br>the quality manual of the test body.                                                                                                   |
| Test system control            | Control of the test system as used in a specific test                                                                                                                                                                                                                                    | E.g. test of stock solutions, evaluation of stability of operational and/or on-line analytical equipment, test of blanks and reference technology tests.                                                                                                              |
| Vendor                         | The party delivering the technology to the customer. Here referred to as proposer                                                                                                                                                                                                        | Can be the producer                                                                                                                                                                                                                                                   |





| Term         | Definition                                                                                                                                                                                                                                                                     | Comments |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Verification | Provision of objective evidence that the<br>technical design of a given<br>environmental technology ensures the<br>fulfilment of a given performance claim<br>in a specified application, taking any<br>measurement uncertainty and relevant<br>assumptions into consideration | None     |





# APPENDIX B Test Data Report









## B Test Data Report

A list of the raw data files for the tests carried out is shown in Figure B1.

| Name                                       | Date modified    | Туре          | Size    |
|--------------------------------------------|------------------|---------------|---------|
| CAL No 1 PC INLET 20040929 115528-01.txt   | 02-10-2014 14:15 | Text Document | 1628 KB |
| CAL test 1 inlet pressure cell.txt         | 30-09-2014 08:46 | Text Document | 1628 KB |
| CAL test 2 outlet pressure cel.txt         | 30-09-2014 08:46 | Text Document | 886 KB  |
| Test no 1 CEV1.4@1.0 q=1.9lps.txt          | 30-09-2014 08:44 | Text Document | 4743 KB |
| Test no 2 CEV1.4@1.0 q=6.3lps.txt          | 01-10-2014 08:55 | Text Document | 824 KB  |
| 📔 Test no 3 CEV1.4@1.0 q= 4.8lps.txt       | 01-10-2014 08:55 | Text Document | 857 KB  |
| TEST no 4 CEV 1.4@1.0 Q=3.1lps.txt         | 01-10-2014 08:55 | Text Document | 1503 KB |
| TEST No 5 CEV1.4@1.0 Q=6.3lps.txt          | 01-10-2014 08:55 | Text Document | 709 KB  |
| TEST No 6 CEV1.4@1.0 Q=6.3lps.txt          | 01-10-2014 08:55 | Text Document | 800 KB  |
| TEST No 7 CEV 4.9@1.5 Q=10.0lps.txt        | 01-10-2014 08:56 | Text Document | 843 KB  |
| TEST No 8 CEV 4.9@1.5 Q=8.3lps.txt         | 02-10-2014 08:16 | Text Document | 2039 KB |
| TEST No 9 CEV4.9@1.5 Q=5.9lps.txt          | 02-10-2014 08:17 | Text Document | 1834 KB |
| TEST No 10 CEV 4.9@1.5 Q=6.6lps.txt        | 02-10-2014 08:16 | Text Document | 1389 KB |
| TEST No 11 CEV 10.5@2.0 Q=15.6lps.txt      | 02-10-2014 08:16 | Text Document | 814 KB  |
| TEST No 12 CEV10.5@2.0 Q=13.9lps.txt       | 02-10-2014 08:17 | Text Document | 1939 KB |
| TEST No 13 CEV10.5@2.0 Q=12.2lps.txt       | 02-10-2014 08:17 | Text Document | 1441 KB |
| TEST No 14 CEV10.5@2.0 Q=11.5lps.txt       | 06-10-2014 08:37 | Text Document | 1814 KB |
| TEST No 15 Orifice Q=14.0lps.txt           | 06-10-2014 08:37 | Text Document | 738 KB  |
| TEST No 16 CEV 10.5@2.0 78% Q=13.3lps.txt  | 06-10-2014 08:38 | Text Document | 2058 KB |
| TEST No 17 CEV 10.5@2.0 78% Q= 11.6lps.txt | 06-10-2014 08:38 | Text Document | 1465 KB |
| TEST No 18 CEV10.5@2.0 78% Q=9,9lps.txt    | 06-10-2014 08:38 | Text Document | 2207 KB |
| TEST No 19 CEV 10.5@2.0 78% Q=9.2lps.txt   | 06-10-2014 08:38 | Text Document | 2551 KB |
| Test no 20 CEV 10.5@2m 78% Q=13.3lps + D   | 31-10-2014 08:55 | Text Document | 2269 KB |
| Test no 21 CEV 10.5@2m 78% Q=8.7Ips.txt    | 31-10-2014 08:55 | Text Document | 2326 KB |
| Test no 22 CEV 10.5@2m 78% Q=11.6lps.txt   | 31-10-2014 08:55 | Text Document | 1542 KB |
| Test no 23 CEV 10.5@2m 78% Q=9.9lps.txt    | 31-10-2014 08:55 | Text Document | 2393 KB |
| ZERO test 1 CEV 1.4@1.0.txt                | 30-09-2014 08:44 | Text Document | 365 KB  |
| ZERO test 2 CEV 4.9@1.5.txt                | 01-10-2014 08:56 | Text Document | 321 KB  |
| ZERO test 3 CEV4.9@1.5.txt                 | 02-10-2014 08:16 | Text Document | 704 KB  |
| ZERO test 4 CEV10.5@2.0.txt                | 02-10-2014 08:16 | Text Document | 398 KB  |
| ZERO test 5 CEV10.5@2.0.txt                | 06-10-2014 08:37 | Text Document | 355 KB  |
| ZERO test 6 Orifice.txt                    | 06-10-2014 08:37 | Text Document | 752 KB  |
| ZERO Test 7 CEV10.5@2.0 78%.txt            | 06-10-2014 08:38 | Text Document | 298 KB  |
| ZERO test 8 CEV 10.5@2m 78%.txt            | 31-10-2014 08:55 | Text Document | 302 KB  |



Tests with the CEV 10.5 @ 2.0m, 78% were repeated, as the inlet opening was set erroneously. Accordingly, the data obtained in Tests 16 to 19 (incl.) have not been processed.

The files are stored centrally at DHI and will remain there until end of 2024.









# APPENDIX C

Test Plan Deviation Reports









# C Test Plan Deviation Reports

| PLAN DOCUMENT TITLE AND DATE: | Mosbaek CEV Flow Regulator, Test Plan, September 2014                                                                                                                                               |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEVIATION NUMBER:             | 1                                                                                                                                                                                                   |
| DATE OF DEVIATION:            | 2014.09.30                                                                                                                                                                                          |
| DESCRIPTION OF DEVIATION:     | The test plan demanded that each test should include logging of zero level for 5 minutes. Instead a common zero tests was carried out for each CEV prior to the tests with this CEV                 |
| REASON FOR DEVIATION:         | This change provided a unique determination of the zero level,<br>and each test can be initiated at a lower level than zero and thus<br>ensured that the inflow is adjusted when the outflow starts |
| IMPACT OF DEVIATION:          | None                                                                                                                                                                                                |
| CORRECTIVE ACTION:            | No corrective action required                                                                                                                                                                       |
| PREVENTIVE ACTION:            | Not relevant                                                                                                                                                                                        |
|                               |                                                                                                                                                                                                     |
| ORIGINATED BY:                | Mogens Hebsgaard                                                                                                                                                                                    |
| Test responsible              | Mogens Hebsgaard                                                                                                                                                                                    |
| DATE:                         | 2014.09.30                                                                                                                                                                                          |





| PLAN DOCUMENT TITLE AND DATE: | Mosbaek CEV Flow Regulator, Test Plan, September 2014                                                                                                                                                                                                                                                                                                             |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEVIATION NUMBER:             | 2                                                                                                                                                                                                                                                                                                                                                                 |
| DATE OF DEVIATION:            | 2014.09.30                                                                                                                                                                                                                                                                                                                                                        |
| DESCRIPTION OF DEVIATION:     | The first test with the CEV 1.4 $\ell$ /s @ 1.0m, 100% was carried out with an inflow of q = 1.79 $\ell$ /s instead of 1.9 $\ell$ /s as prescribed in the test plan                                                                                                                                                                                               |
| REASON FOR DEVIATION:         | This change was caused by the difficulties in adjusting the small inlet flow                                                                                                                                                                                                                                                                                      |
| IMPACT OF DEVIATION:          | The average increase of water level was less than the prescribed 0.5mm/s. The test showed, however, that the performance of the CEV was as expected also for this low flow, and the results showed that it will be possible with good accuracy to predict the results in the form of inlet flow for any water level rise between 0.5 and 1.5mm/s by interpolation |
| CORRECTIVE ACTION:            | No corrective action was performed                                                                                                                                                                                                                                                                                                                                |
| PREVENTIVE ACTION:            | It was ensured that the lowest inflow with the other CEV's was adjusted in a way securing that the average increase of water level was above 0.5mm/s                                                                                                                                                                                                              |
| ORIGINATED BY:                | Mogens Hebsgaard                                                                                                                                                                                                                                                                                                                                                  |
| Test responsible              | Mogens Hebsgaard                                                                                                                                                                                                                                                                                                                                                  |
| DATE:                         | 2014.09.30                                                                                                                                                                                                                                                                                                                                                        |





| PLAN DOCUMENT TITLE AND DATE: | Mosbaek CEV Flow Regulator, Test Plan, September 2014                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEVIATION NUMBER:             | 3                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DATE OF DEVIATION:            | General                                                                                                                                                                                                                                                                                                                                                                                                           |
| DESCRIPTION OF DEVIATION:     | The tests with the highest inflow for all 100% CEV's were carried<br>out giving higher water level rise in the regulator tank than 1.5mm/s,<br>which was aimed at as the largest increase in the tests. During the<br>test, attempt was made to come close to 1.5mm/s, but due to the<br>character of the curve, with the rapid bump, it was difficult in<br>advance to estimate the water level rise.            |
| REASON FOR DEVIATION:         | The deviation was caused by the calculation method used to determine the maximum flow:                                                                                                                                                                                                                                                                                                                            |
|                               | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                              |
|                               | As the $Q_{outflow}$ always should be less than or equal to $Q_{design}$ until $H_{design}$ is reached, the water level rise for this inflow will always be larger than 1.5mm/s                                                                                                                                                                                                                                   |
| IMPACT OF DEVIATION:          | The results of the tests showed that the performance of the CEV was as expected also for water level rise larger than the design conditions. The results showed that it will be possible with good accuracy to predict the results in the form of inlet flow for a water level increase of 1.5mm by interpolation. Doing this, it is even advantageous to have measured values of water level rise above 1.5mm/s. |
| CORRECTIVE ACTION:            | No corrective action was performed                                                                                                                                                                                                                                                                                                                                                                                |
| PREVENTIVE ACTION:            | None                                                                                                                                                                                                                                                                                                                                                                                                              |
| ORIGINATED BY:                | Mogens Hebsgaard                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test responsible              | Mogens Hebsgaard                                                                                                                                                                                                                                                                                                                                                                                                  |
| DATE:                         | 2014.12.11                                                                                                                                                                                                                                                                                                                                                                                                        |





| PLAN DOCUMENT TITLE AND DATE: | Mosbaek CEV Flow Regulator, Test Plan, September 2014                                                                                                            |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEVIATION NUMBER:             | 4                                                                                                                                                                |
| DATE OF DEVIATION:            | 2014.10.02                                                                                                                                                       |
| DESCRIPTION OF DEVIATION:     | The tests with the orifice were carried out with higher inflow than prescribed in the test plan                                                                  |
| REASON FOR DEVIATION:         | The prescribed inflow was too low to reach the prescribed level in the regulator well                                                                            |
| IMPACT OF DEVIATION:          | The deviation has no impact on the results. The $Q - H$ relation followed the theoretical relation as expected and this will be irrespective of the inflow value |
| CORRECTIVE ACTION:            | No corrective action was performed                                                                                                                               |
| PREVENTIVE ACTION:            | None                                                                                                                                                             |
|                               |                                                                                                                                                                  |
| ORIGINATED BY:                | Mogens Hebsgaard                                                                                                                                                 |
| Test responsible              | Mogens Hebsgaard                                                                                                                                                 |
| DATE:                         | 2014.10.02                                                                                                                                                       |





# APPENDIX D

Comparison between Method 1 and Method 2 for Calculation of Outlet Flow







## D Comparison between Method 1 and Method 2 for Calculation of Outlet Flow

The outflow from the CEV's can, with the applied measurement set-up, be calculated in two different ways, see also /1/.

The two methods are:

#### Method 1

The following equation is used in Method 1:

$$Q_{outflow,1} = Q_{inflow} - \frac{\Delta Hrw \times Ain \times 1000}{\Delta t}$$

| Q <sub>outflow,1</sub> : | Flow out through CEV (l/s)                                                             |
|--------------------------|----------------------------------------------------------------------------------------|
| Q <sub>inflow</sub> :    | Flow into the inlet tank $(l/s)$                                                       |
| A <sub>in</sub> :        | Surface area of inlet tank, regulator well and inlet riser pipe (3.315m <sup>2</sup> ) |
| H <sub>rw</sub> :        | Pressure head above outlet invert level in the regulator well (mH <sub>2</sub> O)      |
| ∆t:                      | Time for changing $H_{well}$ by $\Delta H_{well}$ (s)                                  |

### Method 2

The following equation is used in Method 2:

$$Q_{outflow,2} = Q_{overflow} + \frac{\Delta pot \times Aout \times 1000}{\Delta t}$$

| Flow out of CEV (l/s)                                              |
|--------------------------------------------------------------------|
| Overflow from the outlet tank (l/s)                                |
| Surface area of the outlet tank and outlet riser pipe $(0.075m^2)$ |
| Pressure head in the outlet tank (mH <sub>2</sub> O)               |
| Time for changing $H_{out}$ by $\Delta p_{ot}$ (s)                 |
|                                                                    |

The comparison is presented for the test carried out with CEV10.5l/s @ 2.00m – 100% (Test 11). The results of the comparison are shown in Figure D1. Both time series for Q underwent a 60s moving averaging.

It is seen that the relations derived by Method 1 and Method 2 are generally very similar apart from the fluctuations in the Method 1 results.









## A P P E N D I X E

Audit reports


# Audit Report

| DHI Project No        | 11811720                              |                                                      |
|-----------------------|---------------------------------------|------------------------------------------------------|
| Testing project       | Mosbaek CEV Flow Regu                 | lator                                                |
| Date of audit:        | 29 September 2014                     |                                                      |
| Test & audit site:    | Mosbaek A/S, Værkstedsv               | vej 20, 4600 Køge                                    |
| Present during audit: | Jesper Fuchs,                         | Auditor, DHI                                         |
|                       | Torben Krejberg,<br>Mogens Hebsgaard, | Technical director, Mosbaek<br>Test responsible, DHI |

During the audit the first test (Test id: Test 1, CEV1.4 @ 1.0m 100%, q=1.9l/s) was initiated and running. A copy of the test plan, dated September 2014 was available at the site.

#### Compliance with Test Plan:

#### Test set-up

The test set-up as described in the test plan has been followed.

#### Test execution

The auditor suggested the original test procedure changed: It was suggested initiating the test series with each CEV with a common zero reference test instead of initiating each individual test with 5 minutes at zero level without flow. This change provided a unique determination of the zero level, and each test can be initiated at a lower level than zero and thus ensure that the inflow is adjusted when the outflow starts.

#### Calibration of Instruments

The calibration check of the pressure cells was performed earlier that day, and according to the notes and videos this was carried out as described in the test plan.

The flowmeters are pre-calibrated and certificates available in an appendix to the test plan.

#### Test execution

The test was carried out in accordance with the test plan. A list covering the test period is filled in. A test scheme is available in an appendix in the test plan.

#### Data logging and processing

All data are logged and stored. Each day raw data files will be sent to DHI for storage and processing. The raw data will be stored at the DHI project Sharepoint site. A copy of the data files will be stored at Mosbaek.

#### Other issues identified

The test arrangement is set up outdoor, which makes it sensitive to weather conditions; wind may affect the open tanks both with respect to oscillations of the tanks and oscillation of the water levels in the tanks. Tests in strong winds cannot be recommended.



Non-compliance noted None

### Auditor's conclusions

The test is performed in agreement with the test plan and carried out in a safe manner. Handling and storage of data is safe.

Date: 3 October 2014

Signature: \_\_





## ETA Danmark Test System Audit Report

| Project no : 011987-01                                                                                | Date of audit: 20014 10 02                                  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|
| Testing project: Mosbaek CEV flow regulator                                                           | Site: Mosbaek A/S Værkstedsvei 20, 4600 Køge                |  |  |  |  |
| Test system audit – Storm water                                                                       |                                                             |  |  |  |  |
| Present during audit:                                                                                 |                                                             |  |  |  |  |
| , , , , , , , , , , , , , , , , , , ,                                                                 |                                                             |  |  |  |  |
| Auditor: Peter Fritzel                                                                                |                                                             |  |  |  |  |
| Other: Torben Kreiberg, Mosbaek                                                                       |                                                             |  |  |  |  |
| Mogens Hebsgaard, DHI                                                                                 |                                                             |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |
| Checklist                                                                                             |                                                             |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |
| Conformity with test plan:                                                                            |                                                             |  |  |  |  |
| Test method in general                                                                                |                                                             |  |  |  |  |
| Section 2.1.1.: Test set up is as described in test                                                   | t plan. Test plan dated 2014.09.10, available at site       |  |  |  |  |
| Operation of technology:                                                                              | n.,                                                         |  |  |  |  |
| Operation conditions and measurements for                                                             | ily.                                                        |  |  |  |  |
| Section 3.3 · A check list covering a measuring s                                                     | ession is filled out. Viewed list for Test no. 8 with Id    |  |  |  |  |
| CEV4 9@1 5m100% see page 2                                                                            |                                                             |  |  |  |  |
| On-line measurements and sampling for perfe                                                           | ormance parameters                                          |  |  |  |  |
| Section 4.2.: Flow meters are calibrated and cert                                                     | tificates are shown in an appendix to the test plan.        |  |  |  |  |
| Pressure meters is checked. Calibration test view                                                     | wed, see page 3.                                            |  |  |  |  |
| Data logging and retrieval                                                                            |                                                             |  |  |  |  |
| Section 3.2.: All data are logged and stored. Afte                                                    | er the daily session, data is sent to DHI a version is also |  |  |  |  |
| stored at Mosbaek.                                                                                    |                                                             |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |
| Other issues identified by suditor:                                                                   |                                                             |  |  |  |  |
| The tent used for covering the measuring equipn                                                       | nent is sensitive to the weather conditions. An indoor set  |  |  |  |  |
| un could be an idea – it requires only longer corr                                                    | ts to the sensors                                           |  |  |  |  |
| up could be an idea – it requires only longer colds to the sensors.                                   |                                                             |  |  |  |  |
| Non-conformities noted by auditor                                                                     |                                                             |  |  |  |  |
| None                                                                                                  |                                                             |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |
| Auditor's conclusions                                                                                 |                                                             |  |  |  |  |
| There is consistency with the test plan and handling of measurements are carried out in a sale manner |                                                             |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |
|                                                                                                       | I witte                                                     |  |  |  |  |
|                                                                                                       | teter                                                       |  |  |  |  |
| Date: 2014.11.19                                                                                      | Signature:                                                  |  |  |  |  |
|                                                                                                       |                                                             |  |  |  |  |









Model tests with CEV Flow Regulators

Execution of verification tests

Procedure

This procedure describes the way used during execution of the tests.

| Date:    | 1-10-14       |                    |                  |              |         |
|----------|---------------|--------------------|------------------|--------------|---------|
| Test No: | ê             | CEV model and id:  | EEV 491/2 @ 1,5m | Target flow: | R.3 (12 |
| Test id: | Median & CEUS | (91/381.5-9= 836/3 |                  |              |         |

| Action                                                                                    | Check    | Time                  | Signature |
|-------------------------------------------------------------------------------------------|----------|-----------------------|-----------|
| Check instruments                                                                         | V        | N/A                   | Fra       |
| Close inlet adjustment valve is closed                                                    | 12       | 11.05                 | pre       |
| Fill or empty tanks with water just below CEV<br>invert                                   | <i>v</i> | \$ 1.05 Start         | kala      |
| Start data logging (at level just below zero)                                             | V        | 11.05                 | lazo      |
| Wait 5 minutes                                                                            | ν        | 11.10                 | buchs     |
| Start submersible pump                                                                    | V        | 11.07                 | prode     |
| Open valve until target flow is reached                                                   | v        | 11.07                 | Actes     |
| Proceed at least until design H is reached                                                | 7        | 11.35                 | Are       |
| Close inlet valve                                                                         |          | // 35                 | here      |
| Stop pump                                                                                 | V        | 1.12                  | 1, 1,     |
| Proceed until well is empty for one test per CEV                                          | V        | 219                   | 14        |
| Wait 5 minutes                                                                            | P.       | 12 -15                |           |
| Stop data logging                                                                         | ţ.       | $I_2 = \underline{D}$ | 1.7.      |
| Empty the inlet tank and regulator well by<br>evacuation valve in three of the four tests | 144      |                       | 10 ° 1    |
| Check results roughly                                                                     |          | 1                     | 1.1.1     |

21 . . 1

This page is left blank intentionally.







Model tests with CEV Flow Regulators

Check of calibration of pressure transducer in the regulator well

#### Procedure

This procedure describes the way used to verify the calibration of the pressure transducers.

- 1. Close the outlet from the regulator well 🖉
- 2. Fill in water until outlet invert level
- 3. Start recording 14
- Close the inlet valve and let the water level be undisturbed for at least 5min
  Read also the constant water level at the measure stick by video or at least each minute
  Fill in water until about 1m above pressure transducer
- 7. Repeat 4 and 5
- 8. Fill in water until about 2m above pressure transducer
- 9. Repeat 4 and 5
- 10. Fill in water until about 3m above pressure transducer
- Repeat 4 and 5, but 4 with a duration of at least 10min y
  Stop recording y

| Water levels                              | Reading 1 | Reading 2      | Reading 3 | Reading 4 | Reading 5 |
|-------------------------------------------|-----------|----------------|-----------|-----------|-----------|
| At CEV invert<br>level for outlet<br>pipe | 71.0      | ή[, ο          | 71.0      | 71.2      | 91.D      |
| ~0.5~+1199                                | 123.8     | 173,9          | 123,8     | 123.8     | 123,8     |
| ∞1.0 ~ <b>;+2m</b>                        | MAY       | Mise           | 111.7     | 1115      | 111.5     |
| ~1 <u>S</u> <b>~+3</b> m                  | 292,0     | 252 0          | 222.0     | 821.3     | 2213      |
| 11+ 2,00m                                 | 2722      | 5 <b>2</b> (1) | 28 cs.L   | 1 A       | Re Same a |
| · + 1 2.3.                                | 3020      | 5-2            |           | 5025      | 1.1.2     |
| $p \to -^{1/2} e^{2 \sigma_{\rm eff}}$    | · · · ·   | 5.7            | 1. A . K  |           | : 51.9    |

Manual readings

| Date:    | 91 |          |   |   |
|----------|----|----------|---|---|
| Test No: |    | $4c^{3}$ |   | 1 |
| Test id: |    |          | 1 |   |